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Abstract 

Fifty five soil samples collected overall Lithuania in 2011 and 2012 were analyzed for 129I, 137Cs and 

Pu isotopes in order to investigate the level and distribution of artificial radioactivity in Lithuania.. The 

activity and atomic ratio of 238Pu/239,240Pu, 129I/127I and 131I/137Cs were used for identifying the origin of 

these radionuclides. The 238Pu/239+240Pu and 240Pu/239Pu ratios in the soil samples analyzed varied in 

range of 0.02 - 0.18 and 0.18 - 0.24, respectively, suggesting the global fallout as the major source of Pu 

in Lithuania. The values of 10-9 to 10-6 for 129I/127I atomic ratio revealed that the source of 129I in 

Lithuania is global fallout in most cases though several sampling sites shows a possible impact of 

reprocessing releases. Estimated 129I/131I ratio in soil samples from the southern part of Lithuania shows 

negligible input of the Chernobyl fallout. No correlation of the 137Cs and Pu isotopes with 129I was 

observed, indicating their different sources terms. Results demonstrate uneven distribution of these 

radionuclides in the Lithuanian territory and several sources of contamination i.e. Chernobyl accident, 

reprocessing releases and global fallout. 

 

1. Introduction 

The activity and atomic ratios of long-lived radionuclides are useful parameters for identifying their 

origin because their values depend on the sources and generation processes [1–5]. Among them 129I, 
137Cs, 238,239,240Pu are the key radionuclides for prediction of the sources of radioactive contamination. 

The activity ratio of Pu isotopes enables distinguishing the global fallout from nuclear weapons testing,  

the Chernobyl fallout or other sources[6], [7]. Currently the 238Pu/239,240Pu activity ratio is not a precise 

tool to differentiate from one another the global fallout or unexploded weapons-grade Pu. Because the 

SNAP-9A satellite accident in 1964 and the Chernobyl accident in 1986 released, remarkable amounts 

of  238Pu and emerged in the environment[4]. Differentiation of radioactive fallout from various sources 

has been investigated in ice cores [8], sea water [9], [10] atmosphere and soil [2, 4,11] by means of the 

Pu isotope ratios. In general, it is theoretically estimated and confirmed by experimental measurement  

that 240Pu/239Pu atomic ratio of ~ 0.40 is due to the Chernobyl fallout [12]–[14], the values from 0.03 to 

0.18 represent the nuclear test global fallout[2], [15] and the 240Pu/239Pu mass ratio  of about 0.05-0.10 is 

in weapons-grade Pu [2]. 



The ratio of fission and activation products 134, 135, 137Cs varies significantly depending on the reactor 

and fuel type making it an important indicator of the source identification [16]. The half-life of cesium-

137 is relatively short (30.1y), nevertheless it is still possible to use this radionuclide for identification of 

source of the contamination. The main source of this isotope in the environment were the Chernobyl 

accident and nuclear weapon testing[17]–[20]. The 239,240Pu/137Cs activity ratio of 0.018 and 238Pu/137Cs 

activity ratio of 0.00068 the representative value of global fallout in soil were determined by Bunzl and 

Kracke in 1988 [21]. The 239,240Pu/137Cs activity ratio of 0.12 to 0.28 was found in the marine and lake 

sediments as the source of global fallout [17]. The 239,240Pu/137Cs activity ratio for the Chernobyl 

accident releases was observed to be 6.8 in the mushroom sampled in the 30km zone of the Chernobyl 

NPP[18]. Subsequent events such as the wild fire in the Chernobyl forest [22] are possibly secondary 

contamination source. 

Iodine-129 is a naturally occurring long-lived radioisotope of iodine (15.7 My) formed by the cosmic 

ray reaction with Xe and fission of 238U, [23] it is supposed that the stable 127I in the atmosphere and 

biosphere are mainly originated from the releases of iodine from the sea [24]–[26]. The concentration of 

iodine-129 in the environment is low and the natural 129I/127I atomic ratios was theoretically estimated to 

be (0.04-3.0)×10-12, the measured value in the pre-nuclear marine sediment is 1.5×10-12 [23], [27], [28].  

While 129I/127I ratios in pre-nuclear soil show a big variation, this might attributed to the high different 

concentration of 127I in different types of soil.  Since 1945, large amount of 129I was released to the 

environment through human nuclear activities, such as nuclear weapons testing, nuclear fuel 

reprocessing and nuclear accident, the 129I/127I atomic ratio can be therefore used for identifying the 

origin of iodine from the pre- nuclear period to the period of human activities.  Atmospheric 129I/127I 

ratio exceeded 10-9 in the Northern Hemisphere and due to the releases of nuclear weapons testing, while 

this value achieved to 10-6 in European seawater and the North Atlantic seawater due to the discharges of 

two European reprocessing plants in Sellafield (UK) and La Hague (France) [29]–[31]. Fan et al. 

(2013)[32] reported that the major sources of 129I, contributing more than 90% to the total inventory of 
129I in the current environment,  were European nuclear fuel reprocessing plants. Zhang et al. (2013) [33] 

present 129I/127I ratios which vary from 10-12 to 10-4 in pre-nuclear samples and highly contaminated 

areas, respectively. Lehto et al. (2012) [34] show that  129I concentrations in the Baltic Sea water have 

reached 4×109 atoms L-1, and the elevated 129I level was interpreted as the liquid discharges from 

Sellafield and La Hague reprocessing plants, which was transported to the Baltic Sea through water 

exchange between the North Sea and the Baltic Sea. Hou et al. (2009) reported that the concentration of 
129I in the precipitation in Denmark varied from 0.28×109 to 5.63 ×109 atoms L-1 and the 129I/127I ratios 

varied from 5.04×10-8 to 76.5×10-8 with an average value of 30.1×10-8. The high 129I level was 

interpreted as re-emission of 129I from the North Sea, where the 129I/127I ratio in the seawater is up to 10-6 

[35]. 

This work aims to distinguish the possible sources of radioactive contamination in Lithuania by 

measuring the activity concentrations of various radionuclides in the soil samples collected across the 

country.  The additional data of 129I are useful tool to obtain the new knowledge on the sources of 

contamination. For the first time 129I was measured in the soil of Lithuania, which provide essential data 

for further application of these radionuclides for investigation of environmental process. 



 

2. Material and method 

2.1 Sample description, preparation and measurement technique  

 

 

 
Fig. 1. Map of Lithuania divided into two zones (zone-I white color, and zone-II gray color). 

According to Nedveckaite et al. (1986) zone-II was highly contaminated by the radioactive cloud from 

Chernobyl. Most of the samples were collected in zone-II for iodine-129 measurement. 

 

Fifty-five top soil samples (0-5 cm) were collected from different locations across Lithuania in 2011 

and 2012 representing western, south-western and southern parts of Lithuania (Fig.1,Table S-1 in 

supplementary material), and analyzed  for determination of Pu isotopes and 137Cs. Among them, 17 

samples were analyzed for of 129I (Fig.1). Sampling areas were selected with the most probable chance 

of contamination: the southern and western parts of Lithuania area close to the Baltic Sea are regions 

which are under the influence of the global fallout and the Chernobyl accident. According to U. N. S. 

C.[14] about 76% of the total activity from the atmospheric nuclear weapons tests was deposited in the 

northern hemisphere with the major part (~98%) in the region from 0°N to70°N. Moreover, the Baltic 

seashore is a specific area where not only the fallout from the Chernobyl accident contributed to the 

artificial radioactivity levels to a minor degree but also it may be under the influence of the 

contaminated North Sea water [36]. Hou et al. (2002) showed that liquid discharges from nuclear fuel 

reprocessing plants in La Hague (France) and Sellafield (United Kingdom) in the North Atlantic Ocean 

coming to the Baltic Sea through the strait of Denmark  were enriched by 129I [37]. Another sampling 



area was selected in radius of 10 km around the Ignalina Nuclear Power Plant (INPP) which may be the 

potential source of radioactive contamination. 

Four measurements techniques were used: accelerated mass spectrometry (AMS) for 129I, inductively 

coupled plasma mass spectrometry (ICP-MS) for 127I, 239Pu and 240Pu, alpha spectrometry for 238Pu, and 

239,240Pu and gamma spectrometry for 137Cs. For each measurement technique samples were prepared in a 

different way which are described below. 

 

2.2 Determination Iodine isotopes 

Determination of 129I in soil samples were carried out in Xi`an AMS Center, China.  About 5 g 

samples were precisely weighed to a quartz boat, 125I (100 Bq) was spiked.  The sample in the boat was 

combusted in a tube furnace at 800 ºC, iodine released from the sample was trapped in 30 ml of 0.4 mol 

L-1 NaOH-0.05 mol L-1 NaHSO3 solution. The recovery of iodine was monitored using gamma 

spectrometry by measuring 125I in the trap solution, and compared with 125I spiked to the sample. 127I in 

the trap solution was measured applying ICP-MS by using 1.0 ml of solution and diluted 10 times using 

deionized water. 1.0 mg of 127I carrier (prepared by dissolution of iodine crystal in 0.4 mol L-1 NaOH, 

the iodine crystal was purchased from Woodward company, UAS, which has very low level of 129I) was 

added to the remained trap solution, and iodine was separated by solvent extraction using CHCl3 after 

converting all iodine species to iodide using KHSO3 at pH1-2 and oxidizing iodide to I2 using NaNO2.  

Extraction was repeated and organic phases were combined. Iodine in CHCl3 phase was back extracted 

using 0.01 mol L-1 KHSO3, the separated iodine in iodide form was precipitated as AgI by addition of 1 

ml of 1.0 mol L-1 AgNO3 to the back extracted solution. AgI precipitate was separated by centrifuge and 

dried at 70 ˚C, then mixed with Nb powder and pressed into the copper holder. 129I/127I ratios in the 

prepared targets were measured by AMS using 3MV Tandem AMS system (HVEE) in Xi'an AMS 

center. I5+ ions sputtered from the ion source were chosen for the measurement, where 127I5+ was 

measured as charges (current) using a Faraday cup and 129I was measured using a gas ionization 

detector. All samples were measured for 6 cycles and 5 min per sample in each cycle. Procedure blank 

sample was prepared using the same procedure as the samples, and 129I/127I in the blanks were measured 

to be (2.2±0.3) ×10-13, which is 2 orders of magnitude lower than the samples. A detailed information 

about the procedure could be found in [38], [39]. 

 

2.3 Determination of Plutonium Isotopes  

Plutonium was extracted by acid leaching from the soil matrix and purified using the anion-exchange 

(Bio-Rad AG-1×8 100-200 mesh, Bio Rad Company) method followed by the extraction 

chromatography technique. The analytical procedure has been reported elsewhere [40]. The purified 

plutonium sample was used to electrodeposit plutonium on stainless steel disks. The chemical yield of 

plutonium in separation procedures was monitored by measuring 242Pu as a yield tracer. The ORTEC 

Octate-Plus ɑ-spectrometer with eight 600mm2 detectors (resolution in the range of 25-27 keV; 

efficiency ~ 20%) was used to measure activity of 238Pu and 239,240Pu on the disk. The detection limit of 
239+240Pu for counting time of 90000 s was estimated to be about 10 mBq. After the measurements the 



disks were rinsed with ultrapure grade nitric conc. acid (Merck, Germany) the solution was diluted with 

18.2 MΩ de-ionized water to 2 % w/w nitric acid. 
239Pu and 240Pu in 2% HNO3 solution were measured with the sector field inductively coupled plasma 

mass spectrometer (ELEMENT2, Thermo Fisher Scientific). For a better sensitivity and background 

performance the APEX (Elemental Scientific, USA) desolvation nebulizer was used. The detection limit 

for Pu Pu isotopes (239Pu, 240Pu) is estimated based on 3 times standard deviation of the blank to be 

5×10-14 g g-1. 

 

2.4 Determination of Cesium-137 

Soil samples were prepared in plastic containers of the standard geometry for gamma spectrometry 

measurement. The reference standards with radionuclides (57Co, 139Ce, 113Sn, 85Sr, 137Cs, 54Mn and 65Zn) 

free of the coincidence-summing effects were used for the efficiency calibration. The gamma 

spectrometer was equipped with the HPGe coaxial gamma-X-ray detector (GMX-series with a 0.5 mm 

thickness Be window) made by Ortec (USA). The relative efficiency of the detector was 33 %, the 

energy resolution at 1332.5 keV was 1.8 keV. All samples were counted for the fixed time of 50,000 s. 

The detection limit for 137Cs is 0.185 Bq. Additionally, activity concentrations of 40K and 137Cs were 

measured in the IAEA-TEL-2014-03 reference soil sample for analytical quality control. 

 

3. Results and discussion  

3.1 Distribution and sources of Iodine isotopes 

The concentrations of 127I and 129I in soil collected across Lithuania in 2012 are given in Table 1. The 
127I concentrations vary from 0.4±0.06 to 6.66±0.19 μg g-1. The concentration of 129I in meadow soil 

samples was (2.01-10.21)×108atoms g-1, whereas the concentration of 129I in the forest soil varied 

(4.72±0.07-34.16±0.56)×108 atoms g-1. An extremely high concentration of 34.16±0.56×108 atoms g-1 

for 129I was obtained in sample SIL taken at a location 30 km from the Baltic Sea in deciduous forest. 

One of 129I sources in this area might be the Baltic Sea, where marine discharges of 129I from two 

European reprocessing plants was transported along the European cost in the North Sea and then the 

Kattegat and Danish Strait, a high 129I level in the Baltic Sea water has been reported. 129I in the Baltic 

Sea water, as well as in the North Sea where even higher 129I concentration was reported might be 

emitted to the atmosphere, and afterward deposited to the land.[5], [34], [41], [42]. Predominant wind in 

Lithuania is mostly westwards, meaning that gaseous 129I re-emitted from the Baltic Sea and North Sea 

can be transported from the Baltic Sea and deposit to the terrestrial system in Lithuania [36], [43]. 

A rather different distribution of 129I in the meadow and forest soil was observed in present study. 

This might be related to the composition of the upper layer soil as well as geographic circumstance. The 

relative higher 129I concentration in meadow and forest soil might attributed to their better vegetation 

coverage of soil surface, atmospheric deposited iodine (dry deposited and washout of rainfall) can be 

better retained in the soil without significant loss by blowing out by wind or wash out by water flood in 

rain season.  In forest soil, besides atmosphere deposition, degraded tree leaves absorbed 129I from the 

atmosphere fall onto the soil surface might be extra source of 129I in the soil, which make the 129I 

concentration in forest soil higher than other soil type. Retention of the radionuclide in the soil layer 



depends on various factors, one of which is the organic matter content in soil [23], [36], [44]. The 

organic matter content in forest samples ranged from 9 to 89%, while in the meadow samples it ranged 

from 4 to 14%. Different concentrations of iodine in the forest and meadow soil could also be influenced 

by soil pH. The pH values of forest soil vary from 3.54 to 5.63. However, no correlation between the 

concentration of 129I and geochemical parameters (organic matter and pH) of the soil samples was 

observed. For forest soil (sample AMS8) with a very high organic matter content of 89%, the 

concentration of 129I is only 11.90±0.18×108 atoms/g compared to a 129I concentration of 

34.16±0.56×108 atoms g-1 in soil SIL-with the organic matter amount of only 9%. The concentrations of 
129I in the soil samples of the study area are therefore the consequences of a different source and 

retention feature of the soil.  
131I and 134,137Cs activity concentrations in some environmental samples collected in Lithuania in 

1986 straight after the Chernobyl NPP accident were measured [45]. The higher 131I concentration in 

milk was found in the southern and western parts of Lithuania [46]. High levels of 131I, 103Ru and 134Cs 

in the ground level air (45.2 Bq m-3, 20.3 Bq m-3 and 27.9 Bq m-3, respectively) were measured in Preila 

(the Curonian Spit), which is higher than those in Vilnius by a factor of 2–3 [47]. 

 

Table 1.Concentrations and atomic ratios of iodine isotopes in the soil samples 

Code Soil 
type 

Distance to the Baltic 
Sea, km 

127I Conc, 
μg g-1 

129I Conc, 129I/127I ratio, 
×10-8 at at-1 

×108 atoms g-1 

SIL forest 30 3.45±0.03 34.16±0.56 20.89± 0.37 
AMS4 forest 165 6.66± 0.19 22.57±0.34 7.15±0.23 

AMS12 forest 211 5.46±0.13 13.35±0.21 5.15±0.15 
AMS11 forest 227 1.64±0.08 7.24±0.12 9.33±0.48 

AMS8 forest 252 2.17±0.06 11.90±0.18 11.54±0.35 
AMS10 forest 325 2.15±0.05 4.72±0.07 4.63±0.07 

SMIL meadow 0.5 0.40±0.06 1.73±0.06 9.23±1.41 
JOSK meadow 10 3.06±0.16 6.55±0.12 4.52±0.25 

AMS6 meadow 151 2.75±0.07 6.76±0.11 5.20±0.15 
AMS15 meadow 162 4.80±0.06 5.48±0.09 2.00±0.04 

AMS7 meadow 164 4.61±0.10 10.21±0.16 4.67±0.13 
AMS5 meadow 165 1.71± 0.08 4.83±0.07 5.96±0.29 
AMS9 meadow 259 2.64±0.06 7.96±0.12 6.36±0.18 

AMS13 meadow 260 1.29±0.03 4.69±0.08 7.65±0.21 
ZIL-1 meadow 360 2.47± 0.01 3.08± 0.09 2.64± 0.07 
ZIL-6 meadow 361 1.06±0.06 4.96±0.08 9.87±0.21 
ZIL-2 meadow 365 1.98± 0.02 2.01± 0.05 2.14±0.06 

 

Fig. 2 shows the dependence of the concentration of 129I in soil on the distance from the sea to the 

sampling site, a significantly decreased 129I concentration with the distance to the Baltic Sea can be 

observed. The soil samples collected in the area around the INPP (samples ZIL 1, 2, 6, Table 1) shows 

relative lower concentrations of 129I ((1.7-3.1) ×108 atoms g-1) compared to other samples, especially 

those collected close to the Baltic Sea. While 129I/127I atomic ratios in these three samples shows a big 

variation ((263.64-987.25) ×10-10), this is mainly attributed to the very low concentration of 127I in the 



sample SIL-6, cause an increased 129I/127I atomic ratio in this sampling site.  The highest 129I/127I atom 

ratio of 2×10-7 was observed in the sample SIL which was collected at a site nearby the Baltic Sea with a 

distance of only 30 km to the Baltic Sea, the highest 129I concentration of 34×108 atoms g-1 was also 

determined in this sample. A similar high 129I concentrations and 129I/127I atomic ratios were also 

determined in other two sampling sites (SMIL and JOSK) with distance to the Baltic of less than 30 km. 

For the samples collected in the other sites with distance to the Baltic Sea of more than 200 km, and 

remote from the INPP, a relative lower 129I concentration ((4.7-22.6))×108 atoms g-1 ) and 129I/127I atomic 

ratios ((2.0-11.5) ×10-8) were observed, which is similar to the 129I/127I ratio of (10-9 – 10-8) in the 

environment considered as  a representative ratio for  nuclear weapons testing contribution  in terrestrial 

areas[23], [31], [34]. These results might indicate that a very limited contribution of INPP to the 129I in 

the environment compared to the other sources, even for the surrounding area of INPP. A significant 

contribution of the Baltic Sea, with a clear contribution of the reprocessing releases to the 129I level, 

especially to the sampling sites close to the Baltic Sea, i.e. re-emission of 129I to the atmosphere from the 

seawater in the highly contaminated area by the reprocessing plants, such as the Baltic Sea, and North 

Sea is responding to the increased 129I level in these area, although the global fallout of 129I from the 

nuclear weapons testing also has a significant contribution to the 129I inventory in this area[34], [48]. 

 

 
 

Fig.2. A plot of 129I/127I atomic ratio and concentration of 129I in soil samples against the distance 

from sampling site to the Baltic Sea.  

 

The concentration of 127I in the investigated soil sample shows small variation with an average of 

2.98 ± 0.41µg g-1. It has been reported that the 129I transfer factors from soil to grass are quite different 

compared to natural 127I [49],  this might be attributed to the different species of 127I and 129I in soil due 
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to their different sources. Our results do not show a significant correlation (Fig. 3) between 127I and 129I 

in all soil samples, this should result from the different sources of these two isotopes in the soils samples 

investigated in this work. Daraoui et al. (2012) reported that 127I and 129I undergo different sorption 

processes in the soil because of different histories of the two iodine isotopes (“old” and “modern”) in the 

soil [23]. “Old” iodine is originated in the soils over a long time and had a129I/127I ratio of ~ 10-12, while 

“modern” iodine after 1940 has increased the 129I/127I ratio by several orders of magnitude.  

It is interesting to mention that we observe a negative correlation between 129I and 137Cs (R=-0.95) in 

forest soil, but no correlation if we consider all data (meadow and forest soil). This result suggest that 

the sources of these two isotopes is completely different. 129I emission from reprocessing plants and re-

emission from North Sea and the Baltic Sea is a major source of 129I in Lithuania, the two European 

reprocessing plants at La Hague (France) and Sellafield (UK), as well as the North Sea and the Baltic 

Sea located in east of Lithuania, which cause a decreased deposition and concentration of 129I in soil 

with the increased distance from the sampling sites to the Baltic Sea. While Chernobyl accident is a 

major source of 137Cs in Lithuania, cause an inhomogeneous deposition of 137Cs in Lithuania, with a 

trend of higher in the south part (see discussion below). In addition, no correlation between 129I and 

plutonium isotopes was observed, this can be attributed to that plutonium isotopes in Lithuania is mainly 

attributed to the global fallout from the nuclear weapons testing, with small contribution from the 

Chernobyl accident, causing a relative homogeneous distribution in Lithuania (see discussion below). 

 
 

Fig.3. Correlation between 129I and 127I in soil analyzed in this work.  
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The activity concentrations of plutonium isotopes ranged from 0.01 Bq kg-1 to 0.25 Bq kg-1 for 238Pu 

and from 0.05 Bq kg-1 to 1.80 Bq kg-1 for 239,240Pu in 39 meadow and forest soil samples collected in 

autumn of 2011. 238Pu/239,240Pu activity ratios and 240Pu/239Pu atomic ratios were calculated to be 0.02-

0.18 and 0.18-0.24, respectively. In meadow soil, a relative lower 238Pu activity concentration of 0.01–

0.05 Bq kg-1, and 239+240Pu concentration of - 0.07–0.53 Bq kg-1 were measured, whereas a high activity 

concentrations were determined in forest soils, varying in 0.05-0.09 Bq kg-1 of 238Pu and 0.74–1.80 

Bq kg-1 of 239,240Pu. 

Higher 239,240Pu activity concentrations have been reported to be 0.05-1.30 Bq kg-1 in the top-layer 

soils in Lithuania in 1995 and the activity ratio of 238Pu/239,240Pu were in 0.3-0.45 in some samples, 

showing a significant impact of the Chernobyl NPP accident [50]. Following study of lakes sediments 

collected in 1999 revealed that up to 31% of plutonium was originated from the Chernobyl accident 

[51][52]. 

Another study of top-layer meadow soil samples collected all over Lithuania in 2008 showed less 
239,240Pu activity concentration prevailing, namely within 0.10-0.40 Bq kg-1 [53]. All these studies 

indicates that the highest Chernobyl fallout was detected in the southern, south-eastern regions of 

Lithuania where the primary radioactive plume travelled [54]. 
238Pu/239,240Pu activity ratios and 240Pu/239Pu atomic ratios did not show any significant difference in 

undisturbed meadow and forest soil samples while the concentrations of 239,40Pu isotopes and 137Cs 

shows a strong correlation (Fig. 5), this might indicate their similar deposition pattern and similar 

behavior in environment. 137Cs/239,240Pu ratio was similar in both type of soil samples although 239,240Pu 

and 137Cs concentrations were almost three times higher in forest than in the meadow soil (Fig. 4).  

 

 

Fig. 4. Average activity concentration of 239+240Pu and 137Cs in meadow and forest soil. 
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Fig.5. Correlation between the 137Cs and 239,240Pu activity concentrations. 

 

The activity concentrations of 137Cs range in 4.3-53.0 Bq kg-1 in the meadow soil and 

6.65-250.0 Bq kg-1 in forest soil samples (Fig. 4). High 137Cs specific activities of 148.8±11.8, 

210.6±16.8 and 250.0±20.0 Bq kg-1 were found in forest soil samples, especially in AMS4, AMS8 

(southern part of Lithuania), and in AMS10 (southeastern part), respectively. Elevated 137Cs 

concentration in these area might attribute to the deposition of the Chernobyl accident [55]. On the other 

hand,137Cs was deposited world-wide from atmospheric fallout as a result of the above-ground nuclear 

weapons tests in the 1950s and 1960s, the major source of 137Cs on the Lithuanian territory before the 

Chernobyl NPP accident was the global fallout, especially from nuclear weapon tests in Novaya Zemlya, 

in the northern part of Russian Federation [52]. 

Ylipieti et al (2008) did a  comprehensive investigation on 137Cs activity concentration in the top-

layer forest soils in the Baltic States, Finland [56] as well as northwestern part of Russian Federation. 

The results showed that the global fallout of 137Cs was still clearly detectable in the humus layer (0-3 

cm) in the Baltic States (Eastern coast of the Baltic Sea), especially in northeast Estonia and southern 

Finland. An average 137Cs activity concentration of 6.8±1.8 Bq kg-1 was measured before Chernobyl 

accident [55]. The highest deposition area in the Baltic States was northeastern part of Estonia with a 
137Cs deposition density of 550-720 Bq m-2. After the Chernobyl accident 137Cs activity concentration in 

the 0-20 cm arable soil increased to 6.7-28.5 Bq kg-1 [57]. 137Cs measurement in the Baltic coast [58] 

pre- and post-Chernobyl showed a highly heterogeneous distribution of 137Cs with the highest values of 

380–440 Bq kg-1, while pre-Chernobyl values were up to 4 -8 Bq kg-1 only. 
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3.3 Temporal variation of radionuclides level in Lithuania. 

 

Nedveckaitė et al. (1989) have measured  131I and other radionuclides in meadow/grass in Lithuania 

on 12 May, 1986[45] and observed  that the most contaminated area was the south/southwestern part of 

Lithuania. According to the Chernobyl contamination level, Lithuanian territory was divided into two 

zones (zone I and zone II, Fig.1). In zone I (the northern and central region of Lithuania) only 103Ru and 
131I were detected with the average activity concentration of 131I of 1 kBq kg-1. Zone II was the most 

contaminated one, where the lowest activity concentration of 131I was 1.2 kBq kg-1 and the highest 

activity concentration of 131I was 35kBq/kg. Besides 131I and 103Ru, 141Ce, 144Ce, 134Cs, 137Cs, 
140Ba+140La, 95Zr+95Nb were also detected, demonstrated a significant impact of the Chernobyl accident 

in this area. 

The samples measured in this work were mainly collected from zone II. Chernobyl derived 129I/131I 

atomic ratio of 12-19 has been estimated theoretically and by measurements of 129I and 131I in samples 

collected in the highly contaminated area of Chernobyl accident [12]. The estimated 129I/131I atomic ratio 

in this work is much higher than the Chernobyl derived 129I/131I atomic ratio (Fig.6) by a factor up to 10 

and in certain areas even by a factor 60 (fig 6. Range 30 and 360 km) indicating that Chernobyl accident 

has a limited contribution to the 129I inventory in Lithuania.   

To quantitatively estimate the contribution of Chernobyl to 129I, we assume that 129I in Lithuania 

originated from both Chernobyl and global fallout and 131I is only originated from Chernobyl accident, 

our estimated ratio can be presented as: 
129 129
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=  is Chernobyl derived ratio, using the value reported by Mironov et al. (2002), 

Then global fraction of 129I is: 
129 131( )Gl est theo ChI R R I= − ⋅ . 

The measured 129I/131I ratio in most of the samples shows that more than 95% of 129I originated from 

the global fallout which includes nuclear weapon testing, reprocessing facilities, etc. Nevertheless, there 

are a few exception, e.g. the sampling point at 265 km, where 10% of 129I originated from the global 

fallout and the rest ─ of the Chernobyl fallout. The isotopic ratio of 238Pu/239,240Pu at this point is 0.28 

suggesting ~30% plutonium originated from the Chernobyl accident. 



 
Fig.6. Estimated 129I/131I atomic ratios in the investigated soil samples. Solid lines indicates the range 

of the Chernobyl derived ratio reported by Mironov et al. 2002 [12]. 

 

Chernobyl derived 131I/137Cs activity ratio of 10.4 and 129I/137Cs atomic ratio of 0.135 have been 

reported by Mironov et al. 2002. However higher 131I/137Cs activity ratios of 40-92 have been observed 

in the samples taken in the Baltic States and Poland [59], [60]. This was interpreted as a significant 

fractionation between 131I and 137Cs during long distance transport and deposition of Chernobyl 

radioactive plume [12] such a fractionation was also observed in Fukushima derived contamination 

observed in Japan and Europe [61], [62].  
131I/137Cs ratios (decay corrected to 1986) in Lithuania are reconstructed using the measured 137Cs in 

this work and the reported 131I data [45] (Fig.7, open and full circles represent forest and meadow soil 

respectively). Large variation of 131I/137Cs activity ratios of 6 - 2700 was observed. 131I/137Cs activity 

ratios of 5-92 in soil have been reported [59], [60], which  are shown in Fig. 7 (solid lines).  The 

estimated 131I/137Cs activity ratio in this work do not fall into the range of reported values (between two 

lines), most of them higher than the reported values. This indicates reduced 137Cs concentration in the 

measured samples comparing to the reported results. It might be attributed to the gradual removal of 
137Cs from the soil by either erosion of soil or downwards migration of 137Cs in the soil column, disturbs 

of the soil due to human activity might be another reason causing a reduced 137Cs concentration in the 

top surface soil. Filled circles in Fig. 7 represent samples collected in the areas where minimal human 

impact on the soil (agriculture activity) occurred in the past 30 years. The 131I/137Cs activity ratios in 

these samples are close to the range of two solid lines in Fig.7, confirming that human activity might be 

the major influence to the enhanced 131I/137Cs ratios in the soil samples. Considering the high 137Cs levels 

in some Lithuanian soil samples are due to the Chernobyl fallout, we can estimate an average activity 

concentration of 137Cs of about 500 Bq Kg-1 (corrected to 1986) in these soil samples in Lithuania. With 

the reported 129I/137Cs atomic ratio of 0.135 and 131I/137Cs atomic ratio of 10.4 [12], the concentrations of 
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Chernobyl derived 131I and 129I in 1986 can be reconstructed to be ~ 4.6 ×107 atoms g-1 for 129I and ~ 

2.5×106 atoms g-1 for 131I. The concentration of 129I in soil AMS10 (which contains the highest 

concentration of 137Cs 250 Bq kg) was determined to be 4.72±0.07×108 atoms g-1, which is one order of 

magnitude higher that than Chernobyl derived 129I indicating a negligible contribution of Chernobyl 

accident to the 129I inventory in Lithuania, meanwhile it also confirm the domination source of 129I is 

either from the Baltic Sea and North Sea where received high marine discharges of 129I from 

reprocessing plants, as well as the direct atmospheric releases from the two European reprocessing 

plants. 

Fig.7. The estimated activity ratios of 131I/137Cs. Solid lines indicates the range of the Chernobyl derived 

ratio reported by [59], [60]. 

 

5. Conclusions 

The level of key long-lived radionuclides 137Cs, 129I and Pu isotopes were analyzed in soil samples 

collected across Lithuania in 2011-2012. The ratios of these radionuclides in soil samples show that 

there are two major sources in Lithuania, i.e. the Chernobyl accident and reprocessing releases. Though 

the main contamination source for Pu is global fallout and Chernobyl fraction in most contaminated 

areas are 30%. 

The 129I/127I atomic ratio in the soil samples range from 10-9 to 10-6, indicating that the main 

contamination source of 129I in Lithuania is not the Chernobyl accident but other sources – most 

probably the release from European nuclear reprocessing facilities. 

The reconstructed 129I/131I atomic ratios in most of the soil samples shows that more than 95% of 129I 

originated from the fallout, while in the southern part of Lithuania there are some locations indicating 

only 10% of 129I originated from the global fallout. 

No correlation between 137Cs and 129I isotopes in all soil samples suggest that the contamination 

source and the origin of these two isotopes are different. The data show that the concentration of 137Cs 
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contrary to the concentration of 129I did not increase over the past 30 years. It even decreases mostly due 

to a human (agriculture activity) activity. 
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Supplementary data 

Table S-1. Additional sampling information. 

Nr. Code Samling site Nr. Coordinates  Soil type Distance to the Sea, km 
1 1.AN 111026.DIR.KAPČIAM_M 53°59'05''N 23°39'10''E Forest 265 
2 2.AN 111026.DIR.KAPČIAM_M' 53°59'41''N 23°39'03''E Forest 206 
3 3.AN 111026.DIR.KAPČIAM_P'' 54°00'11''N 23°41'47''E Meadow 185 
4 4.AN 111026.DIR.KAPČIAM_P' 54°00'19''N 23°39'19''E Meadow 246 
5 5.AN 111026.DIR.KAPČIAM_P 54°00'54''N 23°39'20''E Meadow 246 
6 6.AN 111025.DIR.SUVALKAI_M 54°01'49''N 22°56'28''E Forest 153 
7 7.AN 111025.DIR.GLEBOKI_BROD_M 53°58'27''N 23°16'03''E Forest 153 
8 8.AN 111025.DIR.PLASKA_M 53°55'17''N 23°13'27''E Forest 142 
9 9.AN 111026.DIR.DIEVENIŠKĖS_P 54°09'59''N 25°36'39''E Meadow 158 
10 10.AN 111026.DIR.MARCINKONYS_M 54°03'06''N 24°24'01''E Forest 184 
11 11.AN 111026.DIR.DIEVENIŠKĖS_M 54°09'40''N 25°36'46''E Forest 214 
12 12.AN 111026.DIR.SEN.VARĖNA_P 54°15'17''N 24°32'25''E Meadow 208 
13 13.AN 111026.DIR.SEN.VARĖNA_P 54°15'17''N 24°32'25''E Meadow 203 
14 14.AN 111025.DIR.LAZDIJAI_P 54°11'18''N 23°28'58''E Meadow 222 
15 15.AN 111025.DIR.IGLIŠKĖLIS_P 54°33'48''N 23°31'54''E Meadow 30 
16 16.AN 111025.DIR.VIRBALIS_P 54°37'31''N 22°50'32''E Meadow 222 
17 17.AN 111025.DIR.VILKAVIŠKIA_P'_6' 54°36'46''N 23°09'33''E Meadow 224 
18 18.AN 111025.DIR.VILKAVIŠKIA_P_6 54°36'46''N 23°09'30''E Meadow 224 
19 19.AN 111026.DIR.DIEVENIŠKĖS_40m.P 54°10'36''N 25°35'20''E Meadow 226 
20 20.AN 111026.DIR.DIEVENIŠKĖS_100m.M 54°10'27''N 25°35'04''E Forest 233 
21 21.AN 111026.DIR.VEISIEJAI_P 54°06'21''N 23°40'08''E Meadow 249 
22  22.AN 111026.DIR.MARCINKONYS_P 54°03'06''N 24°24'04''E Meadow 253 
23 23.AN 111025.DIR.LIEPONYS_M 54°34'43''N 24°21'37''E Forest 253 
24 24.AN 111026.DIR.LEIPALINGIS_P 54°04'47''N 23°54'19''E Meadow 253 
25 25.AN 111026.DIR.DRUSKININKAI_M 54°01'52''N 23°58'55''E Forest 253 
26 26.AN 111025.DIR.SKRIAUDUPIS_P 54°37'28''N 23°12'07''E Meadow 253 
27 27.AN 111026.DIR.ŠALČININKAI-P 54°18'16''N 25°21'32''E Meadow 265 
28 28.AN 111025.DIR.GRAŽIŠKIAI_P 54°26'31''N 23°00'00''E Meadow 265 
29 29.AN 111026.DIR.STAKIAI_P 54°17'45''N 25°32'10''E Meadow 262 
30 30.AN 111025.DIR.PRIENAI_M 54°37'05''N 23°58'43''E Forest 264 
31 31.AN 111026.DIR.LATEŽERIS_M_SMĖL 53°59'16''N 24°08'04''E Forest 259 
32 32.AN 111025.DIR.SKRIAUDUPIS_M 54°37'29''N 23°12'08''E Forest 291 
33 33.AN 111026.DIR.LATEŽERIS_M 53°59'16''N 24°08'04''E Forest 306 
34 34.AN 111026.DIR.EIŠIŠKĖS_P 54°11'45''N 24°50'52''E Meadow 325 
35 35.AN 111026.DIR.LATEŽERIS_ŠK_P 53°59'02''N 24°14'08''E Meadow 325 
36 36.AN 111026.DIR.MARCINK-VARĖNA_M 54°05'02''N 24°24'16''E Forest 325 
37 37.AN 111026.DIR.LATEŽERIS_M' 53°59'23''N 24°08'04''E Forest 325 
38 38.AN 111026.DIR.LATEŽERIS_M_PAKAL 53°59'16''N 24°08'04''E Forest 133 
 


