570 research outputs found

    ALP explanation to the muon (g2)(g-2) and its test at future Tera- ZZ and Higgs factories

    Get PDF
    Models with an axionlike particle (ALP) can provide an explanation for the discrepancy between experimental measurement of the muon anomalous-magnetic moment (g2)μ(g-2)_μ and the Standard Model prediction. This explanation relies on the couplings of the ALP to the muon and the photon. We also include more general couplings to the electroweak gauge bosons and incorporate them in the calculations up to the 2-loop order. We investigate the existing experimental constraints and find that they do not rule out the ALP model under consideration as a possible explanation for the (g2)μ(g-2)_μ anomaly. At the same time, we find the future Tera-Z and Higgs factories, such as the CEPC and FCC-ee, can completely cover the relevant parameter space through searches with final states (γγ)γ(γγ)γ, (μ+μ)γ(μ^+μ^-)γ, and (μ+μ)μ+μ(μ^+μ^-)μ^+μ^-

    Experimental Effects and Individual Differences in Linear Mixed Models: Estimating the Relationship between Spatial, Object, and Attraction Effects in Visual Attention

    Get PDF
    Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures

    A novel mutation outside homeodomain of HOXD13 causes synpolydactyly in a Chinese family

    Get PDF
    AbstractIntroductionHuman synpolydactyly (SPD), belonging to syndactyly (SD) II, is caused by mutations in homeobox d13 (HOXD13). Here, we describe the study of a two-generation Chinese family with a variant form of synpolydactyly.Materials and methodsThe sequence of the HOXD13 gene was analyzed. Luciferase assays were conducted to determine whether the mutation affected the function of the HOXD13 protein.ResultsWe identified a novel c.659G>C (p.Gly220Ala) mutation outside the HOXD13 homeodomain responsible for the disease in this family. This mutation was not found in any of the unaffected family members and healthy control. Luciferase assays demonstrated that this mutation affected the transcriptional activation ability of HOXD13 (only approximately 84.7% of wild type, p<0.05).ConclusionPhenotypes displayed by individuals carrying the novel mutation present additional features, such as the fifth finger clinodactyly, which is not always associated with canonical SPD. This finding enhances our understanding about the phenotypic spectrum associated with HOXD13 mutations and advances our understanding of human limb development

    Constraining Ultralight Dark Matter through an Accelerated Resonant Search

    Full text link
    Experiments aimed at detecting ultralight dark matter typically rely on resonant effects, which are sensitive to the dark matter mass that matches the resonance frequency. In this study, we investigate the nucleon couplings of ultralight axion dark matter using a magnetometer operating in a nuclear magnetic resonance (NMR) mode. Our approach involves the use of a 21^{21}Ne spin-based sensor, which features the lowest nuclear magnetic moment among noble-gas spins. This configuration allows us to achieve an ultrahigh sensitivity of 0.73 fT/Hz1/2^{1/2} at around 5 Hz, corresponding to energy resolution of approximately 1.5×1023eV/Hz1/2\times 10^{-23}\,\rm{eV/Hz^{1/2}}. Our analysis reveals that under certain conditions it is beneficial to scan the frequency with steps significantly larger than the resonance width. The analytical results are in agreement with experimental data and the scan strategy is potentially applicable to other resonant searches. Further, our study establishes stringent constraints on axion-like particles (ALP) in the 4.5--15.5 Hz Compton-frequency range coupling to neutrons and protons, improving on prior work by several-fold. Within a band around 4.6--6.6 Hz and around 7.5 Hz, our laboratory findings surpass astrophysical limits derived from neutron-star cooling. Hence, we demonstrate an accelerated resonance search for ultralight dark matter, achieving an approximately 30-fold increase in scanning step while maintaining competitive sensitivity.Comment: 13 pages, 9 figure

    Seed Germination Indicates Adaptive Transgenerational Plasticity in a Submerged Macrophyte

    Get PDF
    Adaptive transgenerational plasticity is an important evolutionary strategy in plants. We investigated the resource allocation strategy in sexual reproduction and performed an in situ seed germination experiment of Potamogeton maackianus to reveal their responses to different water depths. Later, we discussed the biased adaptability to the maternal habitat in this species. We found a positive correlation between sexual and asexual reproduction in water depths from 1.0 m to 3.0 m, such a correlation failed to occur in 4.0 m water depth. These results indicate that the trade-off between sexual and asexual reproduction should only be expected in a stressful habitat, where resource acquisition is limited. For trade-off between quantity and quality of sexual units in different water depths, P. maackianus tends to produce more but lower quality sexual reproductive units in shallow water, and fewer but higher quality sexual units are found in deep water. The total germination percentage of seeds of P. maackianus was relatively poor, less than 46.65% in all of the treatments. The maximum germination percentage of seeds from 1.0 m, 2.0 m, 3.0 m, and 4.0 m water depths are 14.4%, 17.75%, 25.51%, and 46.65%, respectively. Seeds with higher germination percentage were from deeper water depths. The most interesting result was that the maximum final germination percentage occurred only when treatment water depth was the same as collection water depth. Our result showed that the variations in germination characters of the studied species appear to be based partly on the effects of maternal environmental factors. Our findings proved the adaptive transgenerational plasticity in P. maackianus, which will play an important role in evolutionary response to the selection of water depths

    Robust ferromagnetism of single crystalline CoxZn1−xO (0.3 ≤ x ≤ 0.45) epitaxial films with high Co concentration

    Get PDF
    In contrast to conventional dilute magnetic semiconductors with concentrations of magnetic ions of just a few percent, here, we report the fabrication of epitaxial Cox Zn 1− xO single crystalline films with Co concentrations from x = 0.3 up to 0.45 by radio-frequency oxygen-plasma-assisted molecular beam epitaxy. The films retain their single crystalline wurtzite structure without any other crystallographic phase from precipitates, based on reflection high energy electron diffraction, X-ray diffraction, transmission electron microscopy, and Raman scattering. The results of X-ray diffraction, optical transmission spectroscopy, and in-situ X-ray photoelectron spectroscopy confirm the incorporation of Co2+ cations into the wurtzite lattice. The films exhibit robust ferromagnetism and the magneto-optical Kerr effect at room temperature. The saturation magnetization reaches 265 emu/cm3 at x = 0.45, which corresponds to the average magnetic moment of 1.5 μB per Co atom

    Differential brain mechanisms for processing distracting information in task-relevant and-irrelevant dimensions in visual search

    Get PDF
    A crucial function of our goal-directed behavior is to select task-relevant targets among distractor stimuli, some of which may share properties with the target and thus compete for attentional selection. Here, by applying functional magnetic resonance imaging (fMRI) to a visual search task in which a target was embedded in an array of distractors that were homogeneous or heterogeneous along the task-relevant (orientation or form) and/or task-irrelevant (color) dimensions, we demonstrate that for both (orientation) feature search and (form) conjunction search, the fusiform gyrus is involved in processing the task-irrelevant color information, while the bilateral frontal eye fields (FEF), the cortex along the left intraparietal sulcus (IPS), and the left junction of intraparietal and transverse occipital sulci (IPTO) are involved in processing task-relevant distracting information, especially for target-absent trials. Moreover, in conjunction (but not in feature) search, activity in these frontoparietal regions is affected by stimulus heterogeneity along the task-irrelevant dimension: heterogeneity of the task-irrelevant information increases the activity in these regions only when the task-relevant information is homogeneous, not when it is heterogeneous. These findings suggest that differential neural mechanisms are involved in processing task-relevant and task- irrelevant dimensions of the searched-for objects. In addition, they show that the top-down task set plays a dominant role in determining whether or not task-irrelevant information can affect the processing of the task-relevant dimension in the frontoparietal regions

    The transcriptional coactivator TAZ regulates reciprocal differentiation of T(h)17 cells and T(reg) cells

    Get PDF
    自身免疫性疾病是一类机体对自身抗原发生免疫反应而导致自身多器官、组织受累的慢性炎症性疾病。目前大量研究表明机体内促炎症的TH17细胞和抑制炎症Treg细胞在类群数量和活化状态的失衡是造成自身免疫疾病的主要致病因素。陈兰芬教授和周大旺教授团队的前期研究发现小鼠中Hippo信号通路中激酶Mst1/2缺失导致免疫缺陷,机体易受病原体感染并伴随着严重自身免疫疾病。该研究揭示了Hippo 信号通路转录共激活因子TAZ在决定CD4+初始T细胞分化为促进炎症的TH17效应细胞和抑制免疫反应的Treg调节性细胞过程中发挥着关键作用,拓展了当前对于Hippo信号通路的相关研究内容。 陈兰芬,博士,厦门大学生命科学学院教授。【Abstraact】An imbalance in the lineages of immunosuppressive regulatory T cells (Treg cells) and the inflammatory TH17 subset of helper T cells leads to the development of autoimmune and/or inflammatory disease. Here we found that TAZ, a coactivator of TEAD transcription factors of Hippo signaling, was expressed under T H17 cell–inducing conditions and was required for TH17 differentiation and TH17 cell–mediated inflammatory diseases. TAZ was a critical co-activator of the TH17-defining transcription factor RORγt. In addition, TAZ attenuated Treg cell development by decreasing acetylation of the Treg cell master regulator Foxp3 mediated by the histone acetyltransferase Tip60, which targeted Foxp3 for proteasomal degradation. In contrast, under T regcell–skewing conditions, TEAD1 expression and sequestration of TAZ from the transcription factors RORγt and Foxp3 promoted Treg cell differentiation. Furthermore, deficiency in TAZ or overexpression of TEAD1 induced Treg cell differentiation, whereas expression of a transgene encoding TAZ or activation of TAZ directed TH17 cell differentiation. Our results demonstrate a pivotal role for TAZ in regulating the differentiation of Treg cells and TH17 cells.J. Avruch for comments on the manuscript.Supported by the National Basic Research Program (973) of China (2015CB910502 to L.C.), the National Natural Science Foundation of China (81422018 to L.C.; 31625010 and U1505224 to D.Z.; U1405225 and 81372617 to L.C.; J1310027 to D.Z.; 81472229 to L.H.; and 31600698 to J. Geng), the 111 Projects (B12001 and B06016), China's 1000 Young Talents Program (D.Z., and L.C.), the Fundamental Research Funds for the Central Universities of China-Xiamen University (20720160071 to D.Z. and 20720160054 to L.H.) and Major disease research projects of Xiamen (3502Z20149029 to L.C.)

    Quantitative Proteomic and Transcriptomic Analyses of Metabolic Regulation of Adult Reproductive Diapause in Drosophila suzukii (Diptera: Drosophilidae) Females

    Get PDF
    Diapause is a form of dormancy used by many insects to survive adverse environmental conditions, which can occur in specific developmental stages in different species. Drosophila suzukii is a serious economic pest and we determined the conditions for adult reproductive diapause by the females in our previous studies. In this study, we combined RNA-Seq transcriptomic and quantitative proteomic analyses to identify adult reproductive diapause-related genes and proteins. According to the transcriptomic analysis, among 242 annotated differentially expressed genes in non-diapause and diapause females, 129 and 113 genes were up- and down-regulated, respectively. In addition, among the 2,375 proteins quantified, 39 and 23 proteins were up- and down-regulated, respectively. The gene expression patterns in diapause- and non-diapause were confirmed by qRT-PCR or western blot analysis. The overall analysis of robustly regulated genes at the protein and mRNA levels found four genes that overlapped in the up-regulated group and six genes in the down-regulated group, and thus these proteins/genes may regulate adult reproductive diapause. These differentially expressed proteins/genes act in the citrate cycle, insulin signaling pathway, PI3K-Akt signaling pathway, and amino acid biosynthesis pathways. These results provide the basis for further studies of the molecular regulation of reproductive diapause in this species
    corecore