147 research outputs found

    Impact of Sunlight and Natural Organic Matter on the Fate, Transport, and Toxicity of Carbon Based Nanomaterials

    Get PDF
    The fast growing production of carbon based nanomaterials (CNMs) and their potential widespread use in consumer products raise concerns regarding their potential risks to human health and ecosystems. The present study investigated the role of photochemical transformation and natural organic matter (NOM) in the fate, transport, and toxicity of fullerenes and carbon nanotubes (CNTs) in natural aquatic systems, providing fundamental information for risk assessment and management. Photochemical transformation of aqueous fullerene nanoparticles (nC60) and CNTs occurs at significant rates under UVA irradiation at intensity similar to that in sunlight. The transformation processes are mediated by self-generated ROS, resulting in changes of surface structure depending on the initial surface oxidation state of CNMs. UVA irradiation leads to oxygenation of nC60 surface and decarboxylation of carboxylated multi-walled carbon nanotubes (COOH-MWNTs). The environmental transport of CNMs is significantly affected by their surface chemistry, concentration and species of electrolytes, and concentration and properties of co-existing NOM. In electrolyte solutions without NOM, the mobility of CNMs is largely decided by their surface chemistry, primarily the oxygen-containing functional groups. In NaCl solutions, UVA irradiation remarkably enhanced the mobility of nC60; conversely, it reduced nC60 stability in CaCl2 solutions. The mobility of COOH-MWNTs in NaCl solutions correlated well with the abundance of surface carboxyl groups. Humic acid, once adsorbed on the nC60 surface, can significantly enhance its stability through steric hindrance. The extent of stabilization depends on the amount and properties of humic acid adsorbed. Humic acid has limited adsorption on UVA-irradiated nC60. Soil humic acid is more efficient in stabilizing nC60 than aquatic humic acid due to its higher molecular weight. Humic acid immobilized onto the silica surface can potential enhance or hinder nC60 deposition, depending on the complex interplay of attractive and repulsive forces. MWNTs are more toxicity to bacteria, Escherichia coli, than COOH-MWNTs due to their higher bioavailability and oxidative capacity. Surface oxidation induced by •OH reduced the toxicity of MWNT while reactions with •OH have little effect on the COOH-MWNT toxicity. Antioxidants such as glutathione can effectively inhibit the antibacterial activity of MWNTs.

    Experimental Study on Variation Strategies for Complex Social Pedestrian Groups in Conflict Conditions

    Get PDF
    The paper concentrates on an experimental study of the variation strategies of complex social pedestrian groups in conflict conditions. We tracked the trajectories of group members and analysed the configuration of both the complex group and its subgroups when the groups walked through a narrowing passage, passed by an obstacle or faced counter flows. We summarized the variation strategies of complex groups when they faced these conflict conditions. The effect of groups on the crowd was also studied. It was found that groups could have significant effect on self-organization of the crowd. The results in the paper could be applied in modelling pedestrian group decision and behaviour and analysing crowd dynamics

    Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering

    Get PDF
    In this study, we, for the first time, report a high Cu solubility of 11.8% in single crystal SnSe microbelts synthesized via a facile solvothermal route. The pellets sintered from these heavily Cu-doped microbelts show a high power factor of 5.57 μW cm−1 K−2 and low thermal conductivity of 0.32 W m−1 K−1 at 823 K, contributing to a high peak ZT of ∼1.41. Through a combination of detailed structural and chemical characterizations, we found that with increasing the Cu doping level, the morphology of the synthesized Sn1−xCuxSe (x is from 0 to 0.118) transfers from rectangular microplate to microbelt. The high electrical transport performance comes from the obtained Cu+ doped state, and the intensive crystal imperfections such as dislocations, lattice distortions, and strains, play key roles in keeping low thermal conductivity. This study fills in the gaps of the existing knowledge concerning the doping mechanisms of Cu in SnSe systems, and provides a new strategy to achieve high thermoelectric performance in SnSe-based thermoelectric materials

    MPprimer: a program for reliable multiplex PCR primer design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer) in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility.</p> <p>Results</p> <p>A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs) for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2× to 5× plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy), which has 79 exons, for 20×, 20×, 20×, 14×, and 5× plex PCR reactions in five tubes to detect underlying exon deletions.</p> <p>Conclusions</p> <p>MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.</p

    Copolymerization of ethylene with norbornene by using metallocene/TIBA/B(C6F5)3 system

    Get PDF
    Cyclic olefin copolymer is a type of high-performance polyolefin material, which is prepared by using a single-site catalyst in solution polymerization. The common activator of this system is alkyl aluminoxane or organic  boron/aluminum system. Among them, organic boron is mostly triphenylcarbenium tetrakis(pentafluorophenyl)borate or dimethylanilinium tetrakis(pentafluorophenyl)borate. In this study, ethylene and norbornene were copolymerized with metallocene catalyst activated with the combination of tris(pentafluorophenyl)boron and triisobutylaluminium. Compared with homopolymerization of ethylene, copolymerization shows high activity. The molecular weight of the polymer increased significantly with the increase of the insertion rate of norbornene. Fineman-Ross method was used to calculate the reactivity ratio, which showed that the reactivity ratio of norbornene was much lower than that of ethylene. The high copolymerization activity may indicate that, although norbornene has a lower coordination probability, its insertion rate is higher than ethylene. The copolymer with higher norbornene incorporation has a higher glass transition temperature, and the relationship between them is linear

    Mechanism for Selective Binding of Aromatic Compounds on Oxygen-Rich Graphene Nanosheets Based on Molecule Size/Polarity Matching

    Get PDF
    Selective binding of organic compounds is the cornerstone of many important industrial and pharmaceutical applications. Here, we achieved highly selective binding of aromatic compounds in aqueous solution and gas phase by oxygen-enriched graphene oxide (GO) nanosheets via a previously unknown mechanism based on size matching and polarity matching. Oxygen-containing functional groups (predominately epoxies and hydroxyls) on the nongraphitized aliphatic carbons of the basal plane of GO formed highly polar regions that encompass graphitic regions slightly larger than the benzene ring. This facilitated size match–based interactions between small apolar compounds and the isolated aromatic region of GO, resulting in high binding selectivity relative to larger apolar compounds. The interactions between the functional group(s) of polar aromatics and the epoxy/hydroxyl groups around the isolated aromatic region of GO enhanced binding selectivity relative to similar-sized apolar aromatics. These findings provide opportunities for precision separations and molecular recognition enabled by size/polarity match–based selectivity

    Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ahringer <it>C. elegans </it>RNAi feeding library prepared by cloning genomic DNA fragments has been widely used in genome-wide analysis of gene function. However, the library has not been thoroughly validated by direct sequencing, and there are potential errors, including: 1) mis-annotation (the clone with the retired gene name should be remapped to the actual target gene); 2) nonspecific PCR amplification; 3) cross-RNAi; 4) mis-operation such as sample loading error, <it>etc</it>.</p> <p>Results</p> <p>Here we performed a reliability analysis on the Ahringer <it>C. elegans </it>RNAi feeding library, which contains 16,256 bacterial strains, using a bioinformatics approach. Results demonstrated that most (98.3%) of the bacterial strains in the library are reliable. However, we also found that 2,851 (17.54%) bacterial strains need to be re-annotated even they are reliable. Most of these bacterial strains are the clones having the retired gene names. Besides, 28 strains are grouped into unreliable category and 226 strains are marginal because of probably expressing unrelated double-stranded RNAs (dsRNAs). The accuracy of the prediction was further confirmed by direct sequencing analysis of 496 bacterial strains. Finally, a freely accessible database named CelRNAi (<url>http://biocompute.bmi.ac.cn/CelRNAi/</url>) was developed as a valuable complement resource for the feeding RNAi library by providing the predicted information on all bacterial strains. Moreover, submission of the direct sequencing result or any other annotations for the bacterial strains to the database are allowed and will be integrated into the CelRNAi database to improve the accuracy of the library. In addition, we provide five candidate primer sets for each of the unreliable and marginal bacterial strains for users to construct an alternative vector for their own RNAi studies.</p> <p>Conclusions</p> <p>Because of the potential unreliability of the Ahringer <it>C. elegans </it>RNAi feeding library, we strongly suggest the user examine the reliability information of the bacterial strains in the CelRNAi database before performing RNAi experiments, as well as the post-RNAi experiment analysis.</p

    Developing discriminate model and comparative analysis of differentially expressed genes and pathways for bloodstream samples of diabetes mellitus type 2

    Get PDF
    Background: Diabetes mellitus of type 2 (T2D), also known as noninsulin-dependent diabetes mellitus (NIDDM) or adult-onset diabetes, is a common disease. It is estimated that more than 300 million people worldwide suffer from T2D. In this study, we investigated the T2D, pre-diabetic and healthy human (no diabetes) bloodstream samples using genomic, genealogical, and phonemic information. We identified differentially expressed genes and pathways. The study has provided deeper insights into the development of T2D, and provided useful information for further effective prevention and treatment of the disease. Results: A total of 142 bloodstream samples were collected, including 47 healthy humans, 22 pre-diabetic and 73 T2D patients. Whole genome scale gene expression profiles were obtained using the Agilent Oligo chips that contain over 20,000 human genes. We identified 79 significantly differentially expressed genes that have fold change ≥ 2. We mapped those genes and pinpointed locations of those genes on human chromosomes. Amongst them, 3 genes were not mapped well on the human genome, but the rest of 76 differentially expressed genes were well mapped on the human genome. We found that most abundant differentially expressed genes are on chromosome one, which contains 9 of those genes, followed by chromosome two that contains 7 of the 76 differentially expressed genes. We performed gene ontology (GO) functional analysis of those 79 differentially expressed genes and found that genes involve in the regulation of cell proliferation were among most common pathways related to T2D. The expression of the 79 genes was combined with clinical information that includes age, sex, and race to construct an optimal discriminant model. The overall performance of the model reached 95.1% accuracy, with 91.5% accuracy on identifying healthy humans, 100% accuracy on pre-diabetic patients and 95.9% accuract on T2D patients. The higher performance on identifying pre-diabetic patients was resulted from more significant changes of gene expressions among this particular group of humans, which implicated that patients were having profound genetic changes towards disease development. Conclusion: Differentially expressed genes were distributed across chromosomes, and are more abundant on chromosomes 1 and 2 than the rest of the human genome. We found that regulation of cell proliferation actually plays an important role in the T2D disease development. The predictive model developed in this study has utilized the 79 significant genes in combination with age, sex, and racial information to distinguish pre-diabetic, T2D, and healthy humans. The study not only has provided deeper understanding of the disease molecular mechanisms but also useful information for pathway analysis and effective drug target identification
    corecore