98 research outputs found

    Selection of Reference Genes for qRT-PCR Analysis in Medicinal Plant \u3cem\u3eGlycyrrhiza\u3c/em\u3e under Abiotic Stresses and Hormonal Treatments

    Get PDF
    Best known as licorice, Glycyrrhiza Linn., a genus of herbaceous perennial legume, has been used as a traditional herbal medicine in Asia and a flavoring agent for tobacco and food industry in Europe and America. Abiotic stresses and hormonal treatments can significantly impact the development and metabolism of secondary metabolites in Glycyrrhiza. To better understand the biosynthesis of the trace-amount bioactive compounds, we first screened for the suitable reference genes for quantitative real-time reverse transcription PCR (qRT-PCR) analysis in Glycyrrhiza. The expression profiles of 14 candidate reference genes, including Actin1 (ACT), Clathrin complex AP1 (CAC), Cyclophilin (CYP), Heat-shock protein 40 (DNAJ), Dehydration responsive element binding gene (DREB), Translation elongation factor1 (EF1), Ras related protein (RAN), Translation initiation factor (TIF1), β-Tubulin (TUB), Ubiquitin-conjugating enzyme E2 (UBC2), ATP binding-box transpoter 2 (ABCC2), COP9 signal compex subunit 3 (COPS3), Citrate synthase (CS), and R3H domain protein 2 (R3HDM2) from two congeneric species, Glycyrrhiza uralensis F. and Glycyrrhiza inflata B., were examined under abiotic stresses (osmotic and salinity) and hormonal treatments (Abscisic acid (ABA) and methyl jasmonic acid (MeJA)) using a panel of software, including geNorm, NormFinder, BestKeeper, and Delta CT. The overall stability, however, was provided by RefFinder, a comprehensive ranking system integrating inputs from all four algorithms. In G. uralensis, the most stable reference genes under osmotic stress, salt stress, ABA treatment, and MeJA treatment were TIF1, DNAJ, CS, and ABCC2 for leaves and DNAJ, DREB, CAC, and CAC for roots, respectively. In comparison, the top ranked genes were TUB, CAC, UBC2, and RAN for leaves and TIF1, ABCC2, CAC, and UBC2 for roots, respectively, under stress and hormonal treatments in G. inflata. ACT and TIF1, on the other hand, were the least stable genes under the most experimental conditions in the two congeneric species. Finally, our survey of the reference genes in legume shows that EF, ACT, UBC2, and TUB were the top choices for the abiotic stresses while EF, UBC2, CAC, and ABCC2 were recommended for the hormonal treatments in Leguminosae. Our combined results provide reliable normalizers for accurate gene quantifications in Glycyrrhiza species, which will allow us to exploit its medicinal potential in general and antiviral activities in particular

    Mineralogical characterization of manganese oxide minerals of the Devonian Xialei manganese deposit

    Get PDF
    The Guangxi Zhuang Autonomous Region is an important manganese ore district in Southwest China, with manganese ore resource reserves accounting for 23% of the total manganese ore resource reserves in China. The Xialei manganese deposit (Daxin County, Guangxi) is the first super-large manganese deposit discovered in China. The Mn oxide in the supergene oxidation zone of the Xialei deposit was characterized using scanning electron microscopy (SEM), energy spectrometer (EDS), transmission electron microscopy (TEM, HRTEM), and X-ray diffraction analysis (XRD). The Mn oxides have a gray-black/steel-gray color, a semi-metallic-earthy luster, and appear as oolitic, pisolitic, banded, massive, and cellular textures. Scanning electron microscopy images show that the manganese oxide minerals are present as fine-spherical particles with an earthy surface. TEM and HRTEM indicate the presence of oriented bundled and staggered nanorods, and nanopores between the crystals. The Mn oxide ore can be classified into two textural types: (1) oolitic and pisolitic (often with annuli) Mn oxide, and (2) massive Mn oxide. Pyrolusite, cryptomelane, and hollandite are the main Mn oxide minerals. The potassium contents of cryptomelane and pyrolusite are discussed. The unit cell parameters of pyrolusite are refined

    LncRNA-loc391533 is involved in the progression of preeclampsia through VEGF

    Get PDF
    Objectives: Preeclampsia (PE) is a leading cause of maternal death worldwide, which is one of the most major pregnancy complications. The effects of vascular endothelial growth factor (VEGF) and lncRNA-loc391533 on PE were evaluated in the present study. Material and methods: Expression of VEGF in pregnant women with PE was determined using immunohistochemical and enzyme linked immunosorbent assay (ELISA). The effects of lncRNA-loc391533 knockdown and overexpression on VEGF expression was detected using quantitative polymerase chain reaction (qPCR) and western blotting. Loss/gain-of-function assays were performed to evaluate the role of lncRNA-loc391533 on proliferation, cell cycle and migration of trophoblasts HTR-8/SVneo cells. Results: We found that VEGF and its receptor VEGFR1/2 were low expressed in PE. Knockdown of lncRNA-loc391533 enhanced VEGF expression, while overexpression of lncRNA-loc391533 downregulated VEGF. Moreover, lncRNA-loc391533 was required for proliferation and migration of HTR-8/SVneo cells. Conclusions: In conclusion, our findings emphasized that lncRNA-loc391533 exhibited a critical role in progression of PE through VEGF, which might as a novel therapeutic target for PE treatment

    Comprehensive Evaluation of Tea Cultivars Suitable for Matcha Production Using Multivariate Statistical Analysis

    Get PDF
    Matcha was prepared from 36 tea cultivars grown in the same tea garden according to the shading requirements for fresh leaves to be used for the production of matcha and its 11 quality indexes such as sensory quality, major physicochemical properties and chroma values were analyzed. In order to select tea cultivars suitable for the manufacturing of matcha, a comprehensive evaluation model of matcha quality was established by cluster analysis (CA), principal component analysis (PCA) and multiple linear regression analysis. The CA results showed that the 36 cultivars could be divided into three groups. Matcha from group I had the best quality with green color, fresh and mellow taste, and low phenol/ammonia ratio. Matcha from group II had high phenol/ammonia ratio and strong astringent taste. Matcha from Group III, consisting of etiolated and albino cultivars, had poor color and aroma quality. The PCA results showed that the cumulative contribution rate of the first five principal components was 88.152%. Comprehensive evaluation of matcha using the evaluation function constructed based on the first five principal components showed that the top 10 cultivars were Zhongcha 102, Taicha 12, Zhongcha 108, Fuding Dahao, Meizhan, Fuding Dabai, Fuyun 6, Zi Mudan, Maolv and Yingshuang. The model describing the relationship between sensory quality and physicochemical properties established by multiple linear regression analysis was as follows: y = 3.167|a*| + 46.850 (R2 = 0.710, P < 0.001). The scores of matcha cultivars evaluated by this model were highly consistent with the comprehensive evaluation results based on principal components, indicating that the a* value of dried tea could be used as a representative index to evaluate the quality of matcha. The results of this study can provide a reference for evaluating the suitability of tea cultivars for matcha manufacturing

    Longitudinal Serum Proteome Characterization of COVID-19 Patients With Different Severities Revealed Potential Therapeutic Strategies

    Get PDF
    The COVID-19 pandemic caused by SARS-CoV-2 is exerting huge pressure on global healthcare. Understanding of the molecular pathophysiological alterations in COVID-19 patients with different severities during disease is important for effective treatment. In this study, we performed proteomic profiling of 181 serum samples collected at multiple time points from 79 COVID-19 patients with different severity levels (asymptomatic, mild, moderate, and severe/critical) and 27 serum samples from non-COVID-19 control individuals. Dysregulation of immune response and metabolic reprogramming was found in severe/critical COVID-19 patients compared with non-severe/critical patients, whereas asymptomatic patients presented an effective immune response compared with symptomatic COVID-19 patients. Interestingly, the moderate COVID-19 patients were mainly grouped into two distinct clusters using hierarchical cluster analysis, which demonstrates the molecular pathophysiological heterogeneity in COVID-19 patients. Analysis of protein-level alterations during disease progression revealed that proteins involved in complement activation, the coagulation cascade and cholesterol metabolism were restored at the convalescence stage, but the levels of some proteins, such as anti-angiogenesis protein PLGLB1, would not recovered. The higher serum level of PLGLB1 in COVID-19 patients than in control groups was further confirmed by parallel reaction monitoring (PRM). These findings expand our understanding of the pathogenesis and progression of COVID-19 and provide insight into the discovery of potential therapeutic targets and serum biomarkers worth further validation

    Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa

    Get PDF
    Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP) has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola). Results In this study, we identified over 23,000 simple sequence repeats (SSRs) from 536 sequenced BACs. 890 SSR markers (designated as BrGMS) were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH). Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs), 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species

    Optimization of Resource Allocation in Automated Container Terminals

    No full text
    Automated container terminals have been constructed to reduce emissions and labor cost. Resource allocation problems in automated container terminals have a critical effect on handling efficiency and cost. This paper addresses this problem with quay crane (QC) double cycling in automated container terminals. An optimization model is developed to obtain an optimal resource allocation schedule considering the operation cost, and the cost objective function proves to have convex behavior with optimal solutions. The performance of the operation system and its asymptotic behavior are derived with respect to different resource allocation schedules by formulating the operation processes. Finally, numerical experiments are conducted to verify the system’s performance and validity of the proposed model, and some insights are given about how to increase the terminal’s efficiency
    • …
    corecore