32 research outputs found

    Frequency Offset Correction for OFDM Systems

    Get PDF
    In this paper, we propose a robust method to estimate carrier frequency offset (CFO) for orthogonal frequency division multiplexing (OFDM) systems. A training symbol with two identical halves is employed to measure the fractional part of the CFO. While the integral part is estimated by using a novel noise subspace based metric. Simulation results demonstrate that the proposed method can achieve an estimation range equal to the whole bandwidth of the OFDM signal

    Proteomic-based identification of maternal proteins in mature mouse oocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mature mouse oocyte contains the full complement of maternal proteins required for fertilization, reprogramming, zygotic gene activation (ZGA), and the early stages of embryogenesis. However, due to limitations of traditional proteomics strategies, only a few abundantly expressed proteins have yet been identified. Our laboratory applied a more effective strategy: one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D SDS-PAGE) and reverse-phase liquid chromatography tandem mass spectrometry (RP-LC-MS/MS) were employed to analyze the mature oocyte proteome in depth.</p> <p>Results</p> <p>Using this high-performance proteomic approach, we successfully identified 625 different proteins from 2700 mature mouse oocytes lacking zona pellucidae. This is the largest catalog of mature mouse oocyte proteins compiled to date. According to their pattern of expression, we screened 76 maternal proteins with high levels of mRNA expression both in oocytes and fertilized eggs. Many well-known maternal effect proteins were included in this subset, including MATER and NPM2. In addition, our mouse oocyte proteome was compared with a recently published mouse embryonic stem cell (ESC) proteome and 371 overlapping proteins were identified.</p> <p>Conclusion</p> <p>This proteomics analysis will be a valuable resource to aid in the characterization of important maternal proteins involved in oogenesis, fertilization, early embryonic development and in revealing their mechanisms of action.</p

    A Novel Prognostic Biomarker of Luminal Breast Cancer: High CD39 Expression Is Related to Poor Survival

    Get PDF
    BackgroundCD39 is one of the functional surface markers for T regulatory cells, the prognostic role and immune-related effects of CD39 in luminal breast cancer (BC) patients has not been evaluated yet. The aim of the current study was to explore the association between CD39 expression and clinic pathological characteristics and the prognosis in luminal BC patients.MethodsClinical information and RNA-sequencing (RNA-Seq) expression data were extracted from The Cancer Genome Atlas (TCGA). Patients were divided into a high or low CD39 expression group by the optimal cutoff value (4.18) identified from the receiver operating characteristic curve analysis. The relationships between CD39 expression and clinic pathological features were evaluated by the corresponding statistical tests. Survival analyses were applied to evaluate the overall survival between the high and low CD39 expression groups in luminal BC. Furthermore, Gene Expression Omnibus datasets were used for external data validation. Gene set enrichment analysis (GSEA) was also performed, and CIBERSORT was used to analyze the immune cell populations.ResultsAnalysis of 439 cases of tumor data showed that CD39 was overexpressed in luminal BC. The multivariable analysis suggested that CD39 expression was an independent prognostic factor for luminal BC patients. GSEA suggested that CD39 might play an important role in luminal BC progression through immune regulation. Analysis of immune cell patterns revealed high CD39 expression correlated to a higher proportion of CD8+ T cells and M2 macrophages.ConclusionThis study demonstrates that CD39 expression correlates with the prognosis of luminal BC through TCGA database mining. Further studies are warranted further to elucidate this potential novel therapeutic strategy for BC

    Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize

    Get PDF
    Background: Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings: In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related ciselements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution

    Leaf tensity: a method for rapid determination of water requirement information in Brassica napus L.

    No full text
    Water regulation caused by enzymes, such as carbonic anhydrase (CA), changes the water status, making it difficult to diagnose water deficit using leaf water potential (ψL) or stomatal conductance (gs). Therefore, new methods for timely and accurately determining plant water status should be established. In this study, CA activity, ψL, leaf tensity (Td), photosynthetic characteristics and plant growth of Brassica napus L.Β seedlings under drought and subsequent rewatering were analysed. Results indicated that Td could reflect the plant water status better than ψL or gs and played an important role in the photosynthesis of B. napus. B.Β napus exhibited good restorability at the 40β€…gβ€…Lβˆ’1 polyethylene glycol level. The rewatering strategy for B. napus was excellent at 40β€…gβ€…Lβˆ’1 (βˆ’0.15β€…MPa) β†’20β€…gβ€…Lβˆ’1 (βˆ’0.11β€…MPa). Td could be used for the rapid determination of water requirement information in B. napus during winter drought period

    Quantitative precipitation estimates for the northeastern Qinghai-Tibetan Plateau over the last 18,000 years

    No full text
    Quantitative information regarding the long-term variability of precipitation and vegetation during the period covering both the Late Glacial and the Holocene on the Qinghai-Tibetan Plateau (QTP) is scarce. Herein, we provide new and numerical reconstructions for annual mean precipitation (PANN) and vegetation history over the last 18,000 years using high-resolution pollen data from Lakes Dalianhai and Qinghai on the northeastern QTP. Hitherto, five calibration techniques including weighted averaging, weighted average-partial least squares regression, modern analogue technique, locally weighted weighted averaging regression, and maximum likelihood were first employed to construct robust inference models and to produce reliable PANN estimates on the QTP. The biomization method was applied for reconstructing the vegetation dynamics. The study area was dominated by steppe and characterized with a highly variable, relatively dry climate at similar to 18,000-11,000 cal years B.P. PANN increased since the early Holocene, obtained a maximum at similar to 8000-3000 cal years B.P. with coniferous-temperate mixed forest as the dominant biome, and thereafter declined to present. The PANN reconstructions are broadly consistent with other proxy-based paleoclimatic records from the northeastern QTP and the northern region of monsoonal China. The possible mechanisms behind the precipitation changes may be tentatively attributed to the internal feedback processes of higher latitude (e.g., North Atlantic) and lower latitude (e.g., subtropical monsoon) competing climatic regimes, which are primarily modulated by solar energy output as the external driving force. These findings may provide important insights into understanding the future Asian precipitation dynamics under the projected global warming

    Indoor robot localization based on single RFID tag

    No full text

    Therapeutic Effect of Amomum villosum on Inflammatory Bowel Disease in Rats

    No full text
    Introduction:Amomum villosum Lour., a herbaceous plant in the ginger family, has been proven to be effective in treating gastrointestinal diseases. It has been listed in the Chinese Pharmacopeia as a legal source of Amomi Fructus. In our previous study, we demonstrated that treatment with extracts of A. villosum prevented the development and progression of intestinal mucositis. In the current study, we aimed to verify and explain the potential beneficial effects of A. villosum on inflammatory bowel disease (IBD).Methods: The effect of water extracts (WEAV) and volatile oil of A. villosum (VOAV) were evaluated on the immunological role of T lymphocytes and intestinal microecology in IBD rats induced with 2,4,6-trinitrobenzenesulfonic acid (TNBS). Body weight, food intake, colon length/weight, and disease activity index (DAI) as well as tissue damage scores were evaluated. The inflammatory response to IBD was assessed by measuring the expression of myeloperoxidase, interleukin (IL)-17 (IL-17), interferon-Ξ³ (IFN-Ξ³), IL-10, tumor necrosis factor-Ξ± (TNF-Ξ±), and transforming growth factor-Ξ² (TGF-Ξ²). The percentage of regulatory CD4+ T cells in rat spleen was measured by flow cytometry and effects on the microbial community were evaluated by 16S rDNA gene sequencing.Results: All TNBS-induced rats showed typical clinical manifestations of IBD. IBD rats in the WEAV and VOAV treatment groups were effective in relieving body weight and appetite loss. Middle and high dosage of VOAV and WEAV significantly reduced the DAI, and tissue damage scores, whereas colon weight/length ratio was increase. All rats in the WEAV and VOAV groups showed significantly decreased IFN-Ξ³ levels and increased levels of IL-10 and TGF-Ξ². Moreover, we observed that the percentage of regulatory CD4+ T cells was significantly enhanced during treatment with WEAV. In addition, administration of WEAV and VOAV effectively inhibited the release of enterogenic endotoxin, increased short-chain fatty acid-producing bacteria belonging to Firmicutes and Bacteroidetes, and decreased the abundance of Proteobacteria.Conclusion: Treatment with WEAV and VOAV significantly attenuated intestinal inflammation in IBD rats, which was possibly associated with its regulation on inflammatory cytokine and CD4+CD25+FOXP3+ T cells. Moreover, WEAV and VOAV may help maintaining the balance of intestinal microecology
    corecore