81 research outputs found

    Erosion-induced CO2 flux of small watersheds

    Get PDF
    Soil erosion not only results in severe ecological damage, but also interferes with soil organic carbon formation and decomposition, influencing the global green-house effect. However, there is controversy as to whether a typical small watershed presumed as the basic unit of sediment yield acts as a CO2 sink or source. This paper proposes a discriminant equation for the direction of CO2 flux in small watersheds, basing on the concept of Sediment Delivery Ratio (SDR). Using this equation, watersheds can be classified as Sink Watersheds, Source Watersheds, or Transition Watersheds, noting that small watersheds can act either as a CO2 sink or as a CO2 source. A mathematical model for calculating the two discriminant coefficients in the equation is set up to analyze the conditions under which each type of watershed would occur. After assigning the model parameter values at three levels (low, medium, and high), and considering 486 scenarios in total, the influences are examined for turnover rate of the carbon pool, erosion rate, deposition rate, cultivation depth and period. The effect of adopting conservation measures like residue return, contour farming, terracing, and conservation tillage is also analyzed. The results show that Sink Watersheds are more likely to result in conditions of high erosion rate, long cultivation period, high deposition rate, fast carbon pool turnover rate, and small depth of cultivation; otherwise, Source Watersheds would possibly occur. The results also indicate that residue return and conservation tillage are beneficial for CO2 sequestration. (C) 2012 Elsevier B.V. All rights reserved.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)EI0ARTICLE101-11094-9

    Controls on Interspecies Electron Transport and Size Limitation of Anaerobically Methane-Oxidizing Microbial Consortia

    Get PDF
    About 382 Tg yr⁻Âč of methane rising through the seafloor is oxidized anaerobically (W. S. Reeburgh, Chem Rev 107:486–513, 2007, https://doi.org/10.1021/cr050362v), preventing it from reaching the atmosphere, where it acts as a strong greenhouse gas. Microbial consortia composed of anaerobic methanotrophic archaea and sulfate-reducing bacteria couple the oxidation of methane to the reduction of sulfate under anaerobic conditions via a syntrophic process. Recent experimental studies and modeling efforts indicate that direct interspecies electron transfer (DIET) is involved in this syntrophy. Here, we explore a fluorescent in situ hybridization-nanoscale secondary ion mass spectrometry data set of large, segregated anaerobic oxidation of methane (AOM) consortia that reveal a decline in metabolic activity away from the archaeal-bacterial interface and use a process-based model to identify the physiological controls on rates of AOM. Simulations reproducing the observational data reveal that ohmic resistance and activation loss are the two main factors causing the declining metabolic activity, where activation loss dominated at a distance of <8 Όm. These voltage losses limit the maximum spatial distance between syntrophic partners with model simulations, indicating that sulfate-reducing bacterial cells can remain metabolically active up to ∌30 Όm away from the archaeal-bacterial interface. Model simulations further predict that a hybrid metabolism that combines DIET with a small contribution of diffusive exchange of electron donors can offer energetic advantages for syntrophic consortia

    Microbial interactions in the anaerobic oxidation of methane: Model simulations constrained by process rates and activity patterns

    Get PDF
    Proposed syntrophic interactions between the archaeal and bacterial cells mediating anaerobic oxidation of methane coupled with sulfate reduction include electron transfer through (1) the exchange of H2 or small organic molecules between methane‐oxidizing archaea and sulfate‐reducing bacteria, (2) the delivery of disulfide from methane‐oxidizing archaea to bacteria for disproportionation and (3) direct interspecies electron transfer. Each of these mechanisms was implemented in a reactive transport model. The simulated activities across different arrangements of archaeal and bacterial cells and aggregate sizes were compared to empirical data for AOM rates and intra‐aggregate spatial patterns of cell‐specific anabolic activity determined by FISH‐nanoSIMS. Simulation results showed that rates for chemical diffusion by mechanism (1) were limited by the build‐up of metabolites, while mechanisms (2) and (3) yielded cell specific rates and archaeal activity distributions that were consistent with observations from single cell resolved FISH‐nanoSIMS analyses. The novel integration of both intra‐aggregate and environmental data provided powerful constraints on the model results, but the similarities in model outcomes for mechanisms (2) and (3) highlight the need for additional observational data (e.g. genomic or physiological) on electron transfer and metabolic functioning of these globally important methanotrophic consortia

    Development and Application of TiO 2

    Get PDF
    Titanium dioxide (TiO2) is proposed to be effective photocatalyst for wastewater treatment, air purification, and self-cleaning ability, because of its strong oxidation and superhydrophilicity. In order to conquer the limits of TiO2, a variety of methods have been used. This paper presents a critical review of novel research and achievements in the modification of TiO2 nanoparticles with silver halide (AgX, X=Cl, Br, I), which aims at enhancing the visible light absorption and photosensitivity. Herein we study the synthesis, physical and chemical properties, and the mechanism of this composite photocatalyst

    Research on Community Competition and Adaptive Genetic Algorithm for Automatic Generation of Tang Poetry

    Get PDF
    As there are many researches about traditional Tang poetry, among which automatically generated Tang poetry has arouse great concern in recent years. This study presents a community-based competition and adaptive genetic algorithm for automatically generating Tang poetry. The improved algorithm with community-based competition that has been added aims to maintain the diversity of genes during evolution; meanwhile, the adaptation means that the probabilities of crossover and mutation are varied from the fitness values of the Tang poetry to prevent premature convergence and generate better poems more quickly. According to the analysis of experimental results, it has been found that the improved algorithm is superior to the conventional method

    Microbial interactions in the anaerobic oxidation of methane: Model simulations constrained by process rates and activity patterns

    Get PDF
    Proposed syntrophic interactions between the archaeal and bacterial cells mediating anaerobic oxidation of methane coupled with sulfate reduction include electron transfer through (1) the exchange of H2 or small organic molecules between methane‐oxidizing archaea and sulfate‐reducing bacteria, (2) the delivery of disulfide from methane‐oxidizing archaea to bacteria for disproportionation and (3) direct interspecies electron transfer. Each of these mechanisms was implemented in a reactive transport model. The simulated activities across different arrangements of archaeal and bacterial cells and aggregate sizes were compared to empirical data for AOM rates and intra‐aggregate spatial patterns of cell‐specific anabolic activity determined by FISH‐nanoSIMS. Simulation results showed that rates for chemical diffusion by mechanism (1) were limited by the build‐up of metabolites, while mechanisms (2) and (3) yielded cell specific rates and archaeal activity distributions that were consistent with observations from single cell resolved FISH‐nanoSIMS analyses. The novel integration of both intra‐aggregate and environmental data provided powerful constraints on the model results, but the similarities in model outcomes for mechanisms (2) and (3) highlight the need for additional observational data (e.g. genomic or physiological) on electron transfer and metabolic functioning of these globally important methanotrophic consortia

    Systems Biology of the Clock in Neurospora crassa

    Get PDF
    A model-driven discovery process, Computing Life, is used to identify an ensemble of genetic networks that describe the biological clock. A clock mechanism involving the genes white-collar-1 and white-collar-2 (wc-1 and wc-2) that encode a transcriptional activator (as well as a blue-light receptor) and an oscillator frequency (frq) that encodes a cyclin that deactivates the activator is used to guide this discovery process through three cycles of microarray experiments. Central to this discovery process is a new methodology for the rational design of a Maximally Informative Next Experiment (MINE), based on the genetic network ensemble. In each experimentation cycle, the MINE approach is used to select the most informative new experiment in order to mine for clock-controlled genes, the outputs of the clock. As much as 25% of the N. crassa transcriptome appears to be under clock-control. Clock outputs include genes with products in DNA metabolism, ribosome biogenesis in RNA metabolism, cell cycle, protein metabolism, transport, carbon metabolism, isoprenoid (including carotenoid) biosynthesis, development, and varied signaling processes. Genes under the transcription factor complex WCC ( = WC-1/WC-2) control were resolved into four classes, circadian only (612 genes), light-responsive only (396), both circadian and light-responsive (328), and neither circadian nor light-responsive (987). In each of three cycles of microarray experiments data support that wc-1 and wc-2 are auto-regulated by WCC. Among 11,000 N. crassa genes a total of 295 genes, including a large fraction of phosphatases/kinases, appear to be under the immediate control of the FRQ oscillator as validated by 4 independent microarray experiments. Ribosomal RNA processing and assembly rather than its transcription appears to be under clock control, suggesting a new mechanism for the post-transcriptional control of clock-controlled genes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore