260 research outputs found

    Cache-Aided Non-Orthogonal Multiple Access

    Full text link
    In this paper, we propose a novel joint caching and non-orthogonal multiple access (NOMA) scheme to facilitate advanced downlink transmission for next generation cellular networks. In addition to reaping the conventional advantages of caching and NOMA transmission, the proposed cache-aided NOMA scheme also exploits cached data for interference cancellation which is not possible with separate caching and NOMA transmission designs. Furthermore, as caching can help to reduce the residual interference power, several decoding orders are feasible at the receivers, and these decoding orders can be flexibly selected for performance optimization. We characterize the achievable rate region of cache-aided NOMA and investigate its benefits for minimizing the time required to complete video file delivery. Our simulation results reveal that, compared to several baseline schemes, the proposed cache-aided NOMA scheme significantly expands the achievable rate region for downlink transmission, which translates into substantially reduced file delivery times.Comment: Accepted for presentation at IEEE ICC 201

    Outer Channel of DNA-Based Data Storage: Capacity and Efficient Coding Schemes

    Full text link
    In this paper, we consider the outer channel for DNA-based data storage, where each DNA string is either correctly transmitted, or being erased, or being corrupted by uniformly distributed random substitution errors, and all strings are randomly shuffled with each other. We first derive the capacity of the outer channel, which surprisingly implies that the uniformly distributed random substitution errors are only as harmful as the erasure errors. Next, we propose efficient coding schemes which encode the bits at the same position of different strings into a codeword. We compute the soft/hard information of each bit, which allows us to independently decode the bits within a codeword, leading to an independent decoding scheme. To improve the decoding performance, we measure the reliability of each string based on the independent decoding result, and perform a further step of decoding over the most reliable strings, leading to a joint decoding scheme. Simulations with low-density parity-check codes confirm that the joint decoding scheme can reduce the frame error rate by more than 3 orders of magnitude compared to the independent decoding scheme, and it can outperform the state-of-the-art decoding scheme in the literature in a wide parameter regions.Comment: This paper has been submitted to IEEE Trans. Inf. Theor

    Cache-Aided Non-Orthogonal Multiple Access: The Two-User Case

    Full text link
    In this paper, we propose a cache-aided non-orthogonal multiple access (NOMA) scheme for spectrally efficient downlink transmission. The proposed scheme not only reaps the benefits associated with NOMA and caching, but also exploits the data cached at the users for interference cancellation. As a consequence, caching can help to reduce the residual interference power, making multiple decoding orders at the users feasible. The resulting flexibility in decoding can be exploited for improved NOMA detection. We characterize the achievable rate region of cache-aided NOMA and derive the Pareto optimal rate tuples forming the boundary of the rate region. Moreover, we optimize cache-aided NOMA for minimization of the time required for completing file delivery. The optimal decoding order and the optimal transmit power and rate allocation are derived as functions of the cache status, the file sizes, and the channel conditions. Simulation results confirm that, compared to several baseline schemes, the proposed cache-aided NOMA scheme significantly expands the achievable rate region and increases the sum rate for downlink transmission, which translates into substantially reduced file delivery times.Comment: Accepted for publication in IEEE J. Sel. Topics Signal Process. arXiv admin note: text overlap with arXiv:1712.0955

    The epidemics of myopia: Aetiology and prevention

    Get PDF
    There is an epidemic of myopia in East and Southeast Asia, with the prevalence of myopia in young adults around 80-90%, and an accompanying high prevalence of high myopia in young adults (10-20%). This may foreshadow an increase in low vision and blindness due to pathological myopia. These two epidemics are linked, since the increasingly early onset of myopia, combined with high progression rates, naturally generates an epidemic of high myopia, with high prevalences of "acquired" high myopia appearing around the age of 11-13. The major risk factors identified are intensive education, and limited time outdoors. The localization of the epidemic appears to be due to the high educational pressures and limited time outdoors in the region, rather than to genetically elevated sensitivity to these factors. Causality has been demonstrated in the case of time outdoors through randomized clinical trials in which increased time outdoors in schools has prevented the onset of myopia. In the case of educational pressures, evidence of causality comes from the high prevalence of myopia and high myopia in Jewish boys attending Orthodox schools in Israel compared to their sisters attending religious schools, and boys and girls attending secular schools. Combining increased time outdoors in schools, to slow the onset of myopia, with clinical methods for slowing myopic progression, should lead to the control of this epidemic, which would otherwise pose a major health challenge. Reforms to the organization of school systems to reduce intense early competition for accelerated learning pathways may also be important

    Effect of Ginkgo Biloba on Visual Field and Contrast Sensitivity in Chinese Patients With Normal Tension Glaucoma: A Randomized, Crossover Clinical Trial

    Get PDF
    Citation: Guo X, Kong X, Huang R, et al. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014;55:110-116. DOI: 10.1167/iovs.13-13168 PURPOSE. We evaluated the effect of ginkgo biloba extract on visual field defect and contrast sensitivity in a Chinese cohort with normal tension glaucoma. METHODS. In this prospective, randomized, placebo-controlled crossover study, patients newly diagnosed with normal tension glaucoma, either in a tertiary glaucoma clinic (n ¼ 5) or in a cohort undergoing routine general physical examinations in a primary care clinic (n ¼ 30), underwent two 4-week phases of treatment, separated by a washout period of 8 weeks. Randomization determined whether ginkgo biloba extract (40 mg, 3 times per day) or placebo (identical-appearing tablets) was received first. Primary outcomes were change in contrast sensitivity and mean deviation on 24-2 SITA standard visual field testing, while secondary outcomes included IOP and self-reported adverse events. RESULTS. A total of 35 patients with mean age 63.7 (6.5) years were randomized to the ginkgo biloba extract-placebo (n ¼ 18) or the placebo-ginkgo biloba extract (n ¼ 17) sequence. A total of 28 patients (80.0%, 14 in each group) who completed testing did not differ at baseline in age, sex, visual field mean deviation, contrast sensitivity, IOP, or blood pressure. Changes in visual field and contrast sensitivity did not differ by treatment received or sequence (P > 0.2 for all). Power to have detected a difference in mean defect as large as previously reported was 80%. CONCLUSIONS. In contrast to some previous reports, ginkgo biloba extract treatment had no effect on mean defect or contrast sensitivity in this group of normal tension glaucoma patients. (http://www.chictr.org number, ChiCTR-TRC-08000724

    Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study

    Get PDF
    Background Electronic medical records provide large-scale real-world clinical data for use in developing clinical decision systems. However, sophisticated methodology and analytical skills are required to handle the large-scale datasets necessary for the optimisation of prediction accuracy. Myopia is a common cause of vision loss. Current approaches to control myopia progression are effective but have significant side effects. Therefore, identifying those at greatest risk who should undergo targeted therapy is of great clinical importance. The objective of this study was to apply big data and machine learning technology to develop an algorithm that can predict the onset of high myopia, at specific future time points, among Chinese school-aged children. Methods and findings Real-world clinical refraction data were derived from electronic medical record systems in 8 ophthalmic centres from January 1, 2005, to December 30, 2015. The variables of age, spherical equivalent (SE), and annual progression rate were used to develop an algorithm to predict SE and onset of high myopia (SE ≤ −6.0 dioptres) up to 10 years in the future. Random forest machine learning was used for algorithm training and validation. Electronic medical records from the Zhongshan Ophthalmic Centre (a major tertiary ophthalmic centre in China) were used as the training set. Ten-fold cross-validation and out-of-bag (OOB) methods were applied for internal validation. The remaining 7 independent datasets were used for external validation. Two population-based datasets, which had no participant overlap with the ophthalmic-centre-based datasets, were used for multi-resource validation testing. The main outcomes and measures were the area under the curve (AUC) values for predicting the onset of high myopia over 10 years and the presence of high myopia at 18 years of age. In total, 687,063 multiple visit records (≥3 records) of 129,242 individuals in the ophthalmic-centre-based electronic medical record databases and 17,113 follow-up records of 3,215 participants in population-based cohorts were included in the analysis. Our algorithm accurately predicted the presence of high myopia in internal validation (the AUC ranged from 0.903 to 0.986 for 3 years, 0.875 to 0.901 for 5 years, and 0.852 to 0.888 for 8 years), external validation (the AUC ranged from 0.874 to 0.976 for 3 years, 0.847 to 0.921 for 5 years, and 0.802 to 0.886 for 8 years), and multi-resource testing (the AUC ranged from 0.752 to 0.869 for 4 years). With respect to the prediction of high myopia development by 18 years of age, as a surrogate of high myopia in adulthood, the algorithm provided clinically acceptable accuracy over 3 years (the AUC ranged from 0.940 to 0.985), 5 years (the AUC ranged from 0.856 to 0.901), and even 8 years (the AUC ranged from 0.801 to 0.837). Meanwhile, our algorithm achieved clinically acceptable prediction of the actual refraction values at future time points, which is supported by the regressive performance and calibration curves. Although the algorithm achieved balanced and robust performance, concerns about the compromised quality of real-world clinical data and over-fitting issues should be cautiously considered. Conclusions To our knowledge, this study, for the first time, used large-scale data collected from electronic health records to demonstrate the contribution of big data and machine learning approaches to improved prediction of myopia prognosis in Chinese school-aged children. This work provides evidence for transforming clinical practice, health policy-making, and precise individualised interventions regarding the practical control of school-aged myopia.This study was funded by the National Key R&D Program of China (2018YFC0116500), the National Natural Science Foundation of China (91546101, 81822010), the Guangdong Science and Technology Innovation Leading Talents (2017TX04R031), and Youth Pearl River Scholar in Guangdong (2016)
    • …
    corecore