122 research outputs found

    Puerarin Induces Mitochondria-Dependent Apoptosis in Hypoxic Human Pulmonary Arterial Smooth Muscle Cells

    Get PDF
    Background: Pulmonary vascular medial hypertrophy in hypoxic pulmonary arterial hypertension (PAH) is caused in part by decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Puerarin, an isoflavone purified from the Chinese medicinal herb kudzu, ameliorates chronic hypoxic PAH in animal models. Here we investigated the effects of puerarin on apoptosis of hypoxic human PASMCs (HPASMCs), and to determine the possible underlying mechanisms. Methodology/Principal Findings: HPASMCs were cultured for 24 h in normoxia or hypoxia (5 % O2) conditions with and without puerarin. Cell number and viability were determined with a hemacytometer or a cell counting kit. Apoptosis was detected with a TUNEL test, rhodamine-123 (R-123) fluorescence, a colorimetric assay, western blots, immunohistochemical staining and RT-PCR. Hypoxia inhibited mitochondria-dependent apoptosis and promoted HPASMC growth. In contrast, after puerarin (50 mM or more) intervention, cell growth was inhibited and apoptosis was observed. Puerarin-induced apoptosis in hypoxic HPASMCs was accompanied by reduced mitochondrial membrane potential, cytochrome c release from the mitochondria, caspase-9 activation, and Bcl-2 down-regulation with concurrent Bax up-regulation. Conclusions/Significance: Puerarin promoted apoptosis in hypoxic HPASMCs by acting on the mitochondria-dependent pathway. These results suggest a new mechanism of puerarin relevant to the management of clinical hypoxic pulmonar

    Transcriptome analysis of stem development in the tumourous stem mustard Brassica juncea var. tumida Tsen et Lee by RNA sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumourous stem mustard (<it>Brassica juncea </it>var. <it>tumida </it>Tsen et Lee) is an economically and nutritionally important vegetable crop of the <it>Cruciferae </it>family that also provides the raw material for <it>Fuling </it>mustard. The genetics breeding, physiology, biochemistry and classification of mustards have been extensively studied, but little information is available on tumourous stem mustard at the molecular level. To gain greater insight into the molecular mechanisms underlying stem swelling in this vegetable and to provide additional information for molecular research and breeding, we sequenced the transcriptome of tumourous stem mustard at various stem developmental stages and compared it with that of a mutant variety lacking swollen stems.</p> <p>Results</p> <p>Using Illumina short-read technology with a tag-based digital gene expression (DGE) system, we performed <it>de novo </it>transcriptome assembly and gene expression analysis. In our analysis, we assembled genetic information for tumourous stem mustard at various stem developmental stages. In addition, we constructed five DGE libraries, which covered the strains <it>Yong'an </it>and <it>Dayejie </it>at various development stages. Illumina sequencing identified 146,265 unigenes, including 11,245 clusters and 135,020 singletons. The unigenes were subjected to a BLAST search and annotated using the GO and KO databases. We also compared the gene expression profiles of three swollen stem samples with those of two non-swollen stem samples. A total of 1,042 genes with significantly different expression levels occurring simultaneously in the six comparison groups were screened out. Finally, the altered expression levels of a number of randomly selected genes were confirmed by quantitative real-time PCR.</p> <p>Conclusions</p> <p>Our data provide comprehensive gene expression information at the transcriptional level and the first insight into the understanding of the molecular mechanisms and regulatory pathways of stem swelling and development in this plant, and will help define new mechanisms of stem development in non-model plant organisms.</p

    Robust Interfacial Exchange Bias and Metal-Insulator Transition Influenced by the LaNiO3 Layer Thickness in La0.7Sr0.3MnO3/LaNiO3 Superlattices

    Get PDF
    Artificial heterostructures based on LaNiO3 (LNO) have been widely investigated with the aim to realize the insulating antiferromagnetic state of LNO. In this work, we grew [(La0.7Sr0.3MnO3)5-(LaNiO3)n]12 superlattices on (001)-oriented SrTiO3 substrates by pulsed laser deposition and observed an unexpected exchange bias effect in field-cooled hysteresis loops. Through X-ray absorption spectroscopy and magnetic circular dichroism experiments, we found that the charge transfer at the interfacial Mn and Ni ions can induce a localized magnetic moment. A remarkable increase of exchange bias field and a transition from metal to insulator were simultaneously observed upon decreasing the thickness of the LNO layer, indicating the antiferromagnetic insulator state in 2 unit cells LNO ultrathin layers. The robust exchange bias of 745 Oe in the superlattice is caused by an interfacial localized magnetic moment and an antiferromagnetic state in the ultrathin LNO layer, pinning the ferromagnetic La0.7Sr0.3MnO3 layers together. Our results demonstrate that artificial interface engineering is a useful method to realize novel magnetic and transport properties

    A longitudinal resource for population neuroscience of school-age children and adolescents in China

    Get PDF
    During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013–2022), the first ten-year stage of the lifespan CCNP (2013–2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0–17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the “Chinese Data-sharing Warehouse for In-vivo Imaging Brain” in the Chinese Color Nest Project (CCNP) – Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore