191 research outputs found

    A van der Waals pn heterojunction with organic/inorganic semiconductors

    Full text link
    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C8-BTBT) and n-type MoS2. We find that few-layer C8-BTBT molecular crystals can be grown on monolayer MoS2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C8-BTBT/MoS2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 105 at the room temperature. Our devices also exhibit photovoltaic responses with power conversion efficiency of 0.31% and photoresponsivity of 22mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.Comment: 16 pages, 4 figure

    Shrinkage deformation of different shape of foamed concrete specimen

    Get PDF
    In construction field, the most important element is concrete. Majority of construction in Malaysia use the concrete and the improvement of concrete technology is very important. Example of concrete technology improvement is foamed concrete. Foamed concrete is additional of foaming agent in the concrete mixture to control the concrete density and the foamed concrete do not used the course aggregate. The foaming agent used to trap the air to reduce the concrete density. The strength of foamed concrete is lower than normal concrete and it is suitable to be used at the uncritical structure in the construction. The foamed agent also expose to crack effected by drying shrinkage. Some of the factors causes the drying shrinkage are investigated. Two factors of drying shrinkage investigated in this study are different density of foamed concrete and different shapes of concrete specimens. Prism sized 100mm x 100mm x 500mm, cylinder sized 150mm 0 x 300mm and 150mm cube for 1200 kg/m3 and 1600 kg/m3 density were produced throughout this experiment. The uses of prism and cylinder specimens are because it is normal shape of concrete structure with different surface expose to environmental for shrinkage observation. The cube was used for compressive strength test to prove the targeted density. The result of compressive strength test shows the increments of concrete density produced high strength of concrete. On the other hand, the increments of concrete density reduce the shrinkage value as well as the reduction of surface exposes to the environmental

    Inhibition of NK1.1 signaling attenuates pressure overload-induced heart failure, and consequent pulmonary inflammation and remodeling

    Get PDF
    BackgroundInflammation contributes to heart failure (HF) development, the progression from left ventricular failure to pulmonary remodeling, and the consequent right ventricular hypertrophy and failure. NK1.1 plays a critical role in Natural killer (NK) and NK T (NKT) cells, but the role of NK1.1 in HF development and progression is unknown.MethodsWe studied the effects of NK1.1 inhibition on transverse aortic constriction (TAC)-induced cardiopulmonary inflammation, HF development, and HF progression in immunocompetent male mice of C57BL/6J background.ResultsWe found that NK1.1+ cell-derived interferon gamma+ (IFN-γ+) was significantly increased in pulmonary tissues after HF. In addition, anti-NK1.1 antibodies simultaneously abolished both NK1.1+ cells, including the NK1.1+NK and NK1.1+NKT cells in peripheral blood, spleen, and lung tissues, but had no effect on cardiopulmonary structure and function under control conditions. However, systemic inhibition of NK1.1 signaling by anti-NK1.1 antibodies significantly rescued mice from TAC-induced left ventricular inflammation, fibrosis, and failure. Inhibition of NK1.1 signaling also significantly attenuated TAC-induced pulmonary leukocyte infiltration, fibrosis, vessel remodeling, and consequent right ventricular hypertrophy. Moreover, inhibition of NK1.1 signaling significantly reduced TAC-induced pulmonary macrophage and dendritic cell infiltration and activation.ConclusionsOur data suggest that inhibition of NK1.1 signaling is effective in attenuating systolic overload-induced cardiac fibrosis, dysfunction, and consequent pulmonary remodeling in immunocompetent mice through modulating the cardiopulmonary inflammatory response

    Improved object detection method for unmanned driving based on Transformers

    Get PDF
    The object detection method serves as the core technology within the unmanned driving perception module, extensively employed for detecting vehicles, pedestrians, traffic signs, and various objects. However, existing object detection methods still encounter three challenges in intricate unmanned driving scenarios: unsatisfactory performance in multi-scale object detection, inadequate accuracy in detecting small objects, and occurrences of false positives and missed detections in densely occluded environments. Therefore, this study proposes an improved object detection method for unmanned driving, leveraging Transformer architecture to address these challenges. First, a multi-scale Transformer feature extraction method integrated with channel attention is used to enhance the network's capability in extracting features across different scales. Second, a training method incorporating Query Denoising with Gaussian decay was employed to enhance the network's proficiency in learning representations of small objects. Third, a hybrid matching method combining Optimal Transport and Hungarian algorithms was used to facilitate the matching process between predicted and actual values, thereby enriching the network with more informative positive sample features. Experimental evaluations conducted on datasets including KITTI demonstrate that the proposed method achieves 3% higher mean Average Precision (mAP) than that of the existing methodologies

    Chemotherapy-induced differential cell cycle arrest in B-cell lymphomas affects their sensitivity to Wee1 inhibition

    Get PDF
    Chemotherapeutic agents, e.g., cytarabine and doxorubicin, cause DNA damage. However, it remains unknown whether such agents differentially regulate cell cycle arrest in distinct types of B-cell lymphomas, and whether this phenotype can be exploited for developing new therapies. We treated various types of B cells, including primary and B lymphoma cells, with cytarabine or doxorubicin, and determined DNA damage responses, cell cycle regulation and sensitivity to a Wee1 inhibitor. We found that cyclin A2/B1 upregulation appears to be an intrinsic programmed response to DNA damage; however, different types of B cells arrest in distinct phases of the cell cycle. The Wee1 inhibitor significantly enhanced the apoptosis of G2 phase-arrested B-cell lymphomas by inducing premature entry into mitosis and mitotic catastrophe, whereas it did not affect G1/S-phase-arrested lymphomas. Cytarabine-induced G1-arrest can be converted to G2-arrest by doxorubicin treatment in certain B-cell lymphomas, which correlates with newly acquired sensitivity to the Wee1 inhibitor. Consequently, the Wee1 inhibitor together with cytarabine or doxorubicin inhibited tumor growth in vitro and in vivo more effectively, providing a potential new therapy for treating B-cell lymphomas. We propose that the differential cell cycle arrest can be exploited to enhance the chemosensitivity of B-cell lymphomas
    corecore