462 research outputs found

    Canonical Sources and Duality in Chiral Media

    Get PDF
    Chiral media are characterized by the constitutive relations D = εE + iXicB and H = B/µ + iXicE where Xic is the chirality admittance introduced to take into account macroscopic handedness or optical activity inherent in the media. In addition we define a chirality impedance and a dimensionless chirality factor to describe the wave properties of this medium. As known for some time, this medium supports the plane-wave propagation of circularly polarized waves of opposing handedness and differing wavenumbers. Here we examine the radiation of electromagnetic waves from a set of simple canonical arrays. This leads us to the notion of duality for chiral media which can be exhibited in a surprisingly simple form. We show that in the far field, both point and extended sources, whether electric or magnetic, radiate two electromagnetic eigenmodes which are of opposing handedness. We also demonstrate sources which access only one of the eigenmodes of the medium. Several applications of the results and array performance in chiral media are noted

    Macroscopic quantum coherence in spinor condensates confined in an anisotropic potential

    Full text link
    We investigate the macroscopic quantum coherence of a spin-1 Rb condensate confined in an anisotropic potential. Under the single-mode approximation, we show that the system can be modeled as a biaxial quantum magnet due to the interplay between the magnetic dipole-dipole interaction and the anisotropic potential. By applying a magnetic field along the hard-axis, we show that the tunneling splitting oscillates as a function of the field strength. We also propose an experimental scheme to detect the oscillatory behavior of the tunneling splitting by employing the Landau-Zener tunneling.Comment: 5 pages, 4 figure

    Spin squeezing in nonlinear spin coherent states

    Full text link
    We introduce the nonlinear spin coherent state via its ladder operator formalism and propose a type of nonlinear spin coherent state by the nonlinear time evolution of spin coherent states. By a new version of spectroscopic squeezing criteria we study the spin squeezing in both the spin coherent state and nonlinear spin coherent state. The results show that the spin coherent state is not squeezed in the x, y, and z directions, and the nonlinear spin coherent state may be squeezed in the x and y directions.Comment: 4 pages, 2 figs, revised version submitted to J. Opt.

    Splitting of Landau levels of a 2D electron due to electron-phonon interactions

    Full text link
    We show that in a very strong magnetic field BB electron-phonon interaction gives rise to a splitting of Landau levels of a 2D electron into a series of infinitely degenerate sublevels. We provide both qualitative and quantitative description of this phenomenon. The cases of interaction with acoustic and polar optical phonons are considered. The energy distance between nearest sublevels in both cases tends to zero as B1/2B^{-1/2} at large BB.Comment: 4 pages, LaTe

    Ultra-sustainable Fe 78 Si 9 B 13 metallic glass as a catalyst for activation of persulfate on methylene blue degradation under UV-Vis light

    Get PDF
    Stability and reusability are important characteristics of advanced catalysts for wastewater treatment. In this work, for the first time, sulfate radicals (SO4') with a high oxidative potential (Eo = 2.5-3.1 V) were successfully activated from persulfate by a Fe78Si9B13 metallic glass. This alloy exhibited a superior surface stability and reusability while activating persulfate as indicated by it being used for 30 times while maintaining an acceptable methylene blue (MB) degradation rate. The produced SiO2 layer on the ribbon surface expanded strongly from the fresh use to the 20th use, providing stable protection of the buried Fe. MB degradation and kinetic study revealed 100% of the dye degradation with a kinetic rate k = 0.640 within 20 min under rational parameter control. The dominant reactive species for dye molecule decomposition in the first 10 min of the reaction was hydroxyl radicals (OH,Eo = 2.7 V) and in the last 10 min was sulfate radicals (SO4'), respectively. Empirical operating variables for dye degradation in this work were under catalyst dosage 0.5 g/L, light irradiation 7.7 µW/cm2, and persulfate concentration 1.0 mmol/L. The amorphous Fe78Si9B13 alloy in this work will open a new gate for wastewater remediation. © 2016 The Author(s)

    Role of membrane biophysics in Alzheimer’s–related cell pathways

    Get PDF
    Cellular membrane alterations are commonly observed in many diseases, including Alzheimer's disease (AD). Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-β peptide aggregation, Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s) underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease

    Programming van der Waals interactions with complex symmetries into microparticles using liquid crystallinity

    Get PDF
    Asymmetric interactions such as entropic (e.g., encoded by nonspherical shapes) or surface forces (e.g., encoded by patterned surface chemistry or DNA hybridization) provide access to functional states of colloidal matter, but versatile approaches for engineering asymmetric van der Waals interactions have the potential to expand further the palette of materials that can be assembled through such bottom-up processes. We show that polymerization of liquid crystal (LC) emulsions leads to compositionally homogeneous and spherical microparticles that encode van der Waals interactions with complex symmetries (e.g., quadrupolar and dipolar) that reflect the internal organization of the LC. Experiments performed using kinetically controlled probe colloid adsorption and complementary calculations support our conclusion that LC ordering can program van der Waals interactions by similar to 20 k(B)T across the surfaces of microparticles. Because diverse LC configurations can be engineered by confinement, these results provide fresh ideas for programming van der Waals interactions for assembly of soft matter

    Fermionic entanglement in itinerant systems

    Full text link
    We study pairwise quantum entanglement in systems of fermions itinerant in a lattice from a second-quantized perspective. Entanglement in the grand-canonical ensemble is studied, both for energy eigenstates and for the thermal state. Relations between entanglement and superconducting correlations are discussed in a BCS-like model and for η\eta-pair superconductivity.Comment: 8 Pages LaTeX, 5 Figures included. Presentation improved, results and references adde
    corecore