1,794 research outputs found

    Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture

    Get PDF
    For long distance orbital angular momentum (OAM) based transmission, the conventional whole beam receiving scheme encounters the difficulty of large aperture due to the divergence of OAM beams. We propose a novel partial receiving scheme, using a restricted angular aperture to receive and demultiplex multi-OAM-mode beams. The scheme is theoretically analyzed to show that a regularly spaced OAM mode set remain orthogonal and therefore can be de-multiplexed. Experiments have been carried out to verify the feasibility. This partial receiving scheme can serve as an effective method with both space and cost savings for the OAM communications. It is applicable to both free space OAM optical communications and radio frequency (RF) OAM communications

    Complex-valued wavelet network

    Get PDF
    AbstractIn this paper, a complex-valued wavelet network (CWN) is proposed. The network has complex inputs, outputs, connection weights, dilation and translation parameters, but the nonlinearity of the hidden nodes remains a real-valued function (real-valued wavelet function). This kind of network is able to approximate an arbitrary nonlinear function in complex multi-dimensional space, and it provides a powerful tool for nonlinear signal processing involving complex signals. A complex algorithm is derived for the training of the proposed CWN. A numerical example on nonlinear communication channel identification is presented for illustration

    Fabrication of TiO

    Get PDF
    The fabrication process and the growth mechanism of titanium/titania nanotubes prepared by anodization process is reviewed, and their applications in the fields of dye sensitized solar cells, photocatalysts, electrochromic devices, gas sensors, and biomaterials are presented. The anodization of Ti thin films on different substrates and the growth process of anodic titanium oxide are described using the current-time curves. Special attention is paid on the influences of the initial film smoothness on the resulted nanoporous morphologies. The “threshold barrier layer thickness model” is used to discuss the growth mechanism. As a case study for gas sensing, anodized highly ordered TiO2 nanotube arrays and nanoporous thin films that show porous surface with an average diameter of 25 nm and interpore distance of 40 nm were prepared. Gas sensors based on such nanotube arrays and nanoporous thin films were fabricated, and their sensing properties were investigated. Excellent H2 gas sensing properties were obtained for sensors prepared from these highly ordered TiO2 nanotube arrays, which present stable response even at a low operating temperature of 90°C. Based on our experimental results, “H-induced O2− desorption” mechanism was used for explaining the hydrogen gas sensing mechanism
    • 

    corecore