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Abstract

In this paper, a complex-valued wavelet network (CWN) is proposed. The network has complex inputs,
outputs, connection weights, dilation and translation parameters, but the nonlinearity of the hidden nodes
remains a real-valued function (real-valued wavelet function). This kind of network is able to approximate
an arbitrary nonlinear function in complex multi-dimensional space, and it provides a powerful tool for
nonlinear signal processing involving complex signals. A complex algorithm is derived for the training of
the proposed CWN. A numerical example on nonlinear communication channel identification is presented
for illustration.
r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In recent years, neural networks have been widely studied because of their outstanding
capability of fitting nonlinear models. As wavelet has emerged as a new powerful tool for
representing nonlinearity, a class of networks combining wavelets and neural networks has
recently been investigated [5,13,15]. It has been shown that wavelet networks provide better
function approximation ability than the multilayer perception (MLP) and radial basis function
(RBF) networks.
In some applications, however, the inputs and outputs of a system are best described as

complex-valued signals and processing is done in complex space. An example is the identification
of digital communication channels with complex signal schemes such as quadrature amplitude
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modulation (QAM). For complex signal processing problems, many existing neural networks
cannot directly be applied. Although for certain applications it is possible to reformulate a
complex signal processing problem so that a real-valued network and learning algorithm can be
used to solve the problem, it is not always feasible to do so. Moreover it is preferred to preserve
the concise formulation and elegant structure of complex signal.
Recently, results have appeared in the literature that generalize the well-known back-

propagation (BP) algorithm for training a feed-forward neural network with complex weights
[2,8,10], the complex BP algorithm has been shown to be a straight forward extension of the real-
valued one. In [9], the authors extended the Real Time Recurrent Learning (RTRL) algorithm to
the complex RTRL (CRTRL) and applying it to complex communication channel equalization.
And the complex-valued RBF neural networks were proposed and applied to nonlinear
communication channel identification and equalization in [3,4]. The complex spline neural
network was presented in [14].
The advantage of using complex-valued neural network instead of a real-valued neural network

counterpart fed with a pair of real values is well known [1]. In complex-valued neural networks,
one of the main problems is the selecting of nodes activation function. In real case, the node
activation function is usually chosen to be a continuous, bounded and nonconstant function.
These conditions on the activation function are very mild and there is no problem in selecting a
real function that satisfies these requirements and that is also smooth (derivative exists). In the
complex case, any regular analytic function cannot be bounded unless it reduces to a constant.
This is known as the Liouville’s theorem. In complex case, the main constraints that the activation
function should satisfy can be found in literatures [6,7].
The present study proposes a complex wavelet network, which is an extension of the real-valued

wavelet network. The inputs, outputs, weights, dilation and translation parameters are all
complex-valued, but the nonlinearity of the hidden nodes remains a real wavelet function. The
network can be viewed as a mapping from the complex multi-dimensional input space onto the
complex output space. The following of this paper is organized as follows. In Section 2, we briefly
introduce the wavelet networks. We propose the CWN architecture in Section 3. And the
complex-valued learning algorithm for the training of CWN is derived in Section 4. In Section 5,
we evaluate the performance of the proposed CWN through applying it to the identification of a
nonlinear complex communication channels. And finally in Section 6, we summarize our
conclusions.

2. Wavelet networks

Wavelet is a new powerful tool for representing nonlinearity. A function f ðxÞ can be
represented by the superposition of daughters ca;bðxÞ of a mother wavelet cðxÞ:Where ca;bðxÞ can
be expressed as

ca;bðxÞ ¼
1ffiffiffi
a

p c
x � b

a

� �
ð1Þ

aARþ and bAR are, respectively, called dilation and translation parameters.
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The continuous wavelet transform of f ðxÞ is defined as

wða; bÞ ¼
Z

N

�N

f ðxÞca;bðxÞ dx ð2Þ

and the function f ðxÞ can be reconstructed by the inverse wavelet transform

f ðxÞ ¼
Z

N

�N

Z
N

�N

wða; bÞca;bðxÞ
da db

a2
: ð3Þ

The continuous wavelet transform and its inverse transform are not directly implementable on
digital computers. When the inverse wavelet transform (3) is discretized, f ðxÞ has the following
approximative wavelet-based representation form:

f̂ðxÞE
XK

k¼1
wkc

x � bk

ak

� �
; ð4Þ

where the wk; bk; and ak are weight coefficients, translations and dilations for each daughter
wavelet. This approximation can be expressed as the neural network of Fig. 1, which contains
wavelet nonlinearities in the artificial neurons rather than the standard sigmoidal nonlinearities.
The wavelet network (4) can only be used to approximate single-input-single-output (SISO)

functions. It can be extended to M-D case. The simplest scheme is to use the M-D wavelets
constructed from the tensor products of 1-D wavelets [15]. However, the complexity of each
wavelet increases when the dimension increases. As a result, a rather complex network
architecture is inevitable.
The theoretical result proved in [16] pointed out that if wðxÞ is a measurable function and

wðxÞALq½a; b	 ð1pqpNÞ for every a; bAR; aob and the set of finite linear combinationsP
hiwðxix þ ZiÞ; where hi; xi; ZiAR; are dense in any Lq½a; b	; then the set of finite linear

combinations
P

diwðzix þ yiÞ are dense in LqðKÞ; where di; yiAR; zi; xARq and K is a compact
set in Rq: Combining the result with the above discussion on (4), we can use a model of neural
network with N inputs as suggested in [5].

f̂ðxÞ ¼
XK

k¼1
wkc

PN
n¼1 cknxn � bk

ak

 !
; ð5Þ
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Fig. 1. Wavelet neural network architecture.
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where x ¼ ½x1;x2;y;xN 	ARN and ckn are the connection weight from the nth input to the kth
wavelet neuron. Thus, only 1-D wavelet bases are used in the wavelet neural network (5) for any
dimension case. The network architecture is simplified and simple learning method can be used to
search for optimal weights.

3. The complex wavelet network architecture

Since any multi-input-multi-output (MIMO) system can be decomposed into multi-input-
single-output (MISO) systems, we only consider the MISO CWN as depicted in Fig. 2 in this
paper.
Denote the number of input and wavelet neuron as N and K ; respectively. As usual, a complex

quantity is defined as

y ¼ ReðyÞ þ j ImðyÞ ¼ yR þ jyI; ð6Þ

where the subscript R and I denote the real and imaginary part, respectively, and j ¼
ffiffiffiffiffiffiffi
�1

p
denote

the imaginary unit vector, the asterisk denotes complex conjugate. The input xi; i ¼ 1;y;N; the
output y; the connected weight cij (connected from the jth input node to the ith wavelet neuron),

wi (connected from the ith wavelet neuron to the output node), and the total input to the ith
wavelet neuron si are all complex-valued. From Fig. 2, we can obtain

si ¼ cH
i x; ð7Þ

where ci ¼ ½ci1; ci2;y; ciN 	T ; x ¼ ½x1; x2;y; xN 	T ; the superscript H denotes Hermitian transpo-
sition. The outputs of hidden nodes are given by

hi ¼ ciðsiÞ ¼ c
si � bi

ai

� �H
si � bi

ai

� � !
9cðziÞ; ð8Þ

where zi ¼ ðsi�bi

ai
ÞHðsi�bi

ai
Þ; bi and ai are complex dilation and translation parameters, respectively.

cð
Þ is a real wavelet function and is referred to as the nonlinearity of the hidden nodes. The
selection of the real wavelet function is the same as in the case of real wavelet networks. Two
typical examples are the Harr wavelet function

cðx2Þ ¼ ð1� x2Þe�
1
2 x2 ð9Þ
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Fig. 2. MISO complex wavelet network architecture.
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and the so-called ‘‘difference of Gaussian’’ wavelet function

cðx2Þ ¼ e�
1
2

x2 � 1

2
e�

1
8

x2 ; ð10Þ

the output node is a complex linear combiner defined by

y ¼ wHh; ð11Þ

where w ¼ ½w1;y;wK 	T ; h ¼ ½h1;y; hK 	T :

4. The complex-valued backpropagation of CWN

The backpropagation (BP) algorithm [11] is one of the most popular learning algorithms in
neural networks. This algorithm performs an approximation to the minimization achieved by the
method of steepest descent.
The error signal eðnÞ required for adaptation is defined as the difference between the desired

response dðnÞ and the actual output of the CWN yðnÞ:
eðnÞ ¼ dðnÞ � yðnÞ; ð12Þ

we can define the objective function as

EðnÞ ¼ jeðnÞj2 ¼ eðnÞe�ðnÞ: ð13Þ

The BP algorithm minimizes the objective function EðnÞ by recursively adjusting the parameters
fwi; cij; bi; aig based on the gradient search technique. Thus, finding the gradient vector of EðnÞ is
the main idea of deriving the BP algorithm. We first find the partial derivative of EðnÞ with respect
to the weights wi; and then extend to all parameters. We define the gradient vector rwEðnÞ as the
derivative of the cost function EðnÞ with respect to the real and imaginary parts of the weight
vector w as shown by

rwEðnÞ ¼ @EðnÞ
@wR

þ j
@EðnÞ
@wI

: ð14Þ

By substituting (13) into (14), we can get

rwEðnÞ ¼ eðnÞ @e�ðnÞ
@wR

þ e�ðnÞ @eðnÞ
@wR

þ jeðnÞ @e�ðnÞ
@wI

þ je�ðnÞ @eðnÞ
@wI

: ð15Þ

Differentiating eðnÞ in Eq. (12) with respect to the real and imaginary parts of w; we can obtain the
following four partial derivatives:

@eðnÞ
@wR

¼ �hðnÞ; @e�ðnÞ
@wR

¼ �h�ðnÞ; @eðnÞ
@wI

¼ jhðnÞ; @e�ðnÞ
@wI

¼ �jh�ðnÞ: ð16Þ

By substituting Eq. (16) into (15), we can obtain the following result:

rwEðnÞ ¼ �2hðnÞe�ðnÞ: ð17Þ
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Thus the update equation of wðnÞ can be expressed as

wðn þ 1Þ ¼ wðnÞ � 1

2
m1rwEðnÞ ¼ wðnÞ þ m1hðnÞe�ðnÞ: ð18Þ

where m1 is the step size.
Similarly, we have

@EðnÞ
@ciR

¼ @EðnÞ
@hiðnÞ

@hiðnÞ
@ziðnÞ

@ziðnÞ
@siR

@siR

@ciR
þ @ziðnÞ

@siI

@siI

@ciR

	 

¼ � 2 Re½wiðnÞeðnÞ	c0ðziÞ½2ðsiR � biRÞxR þ 2ðsiI � biIÞxI	=ða�

i aiÞ ð19Þ
and

@EðnÞ
@ciI

¼ @EðnÞ
@hiðnÞ

@hiðnÞ
@ziðnÞ

@ziðnÞ
@siR

@siR

@ciI
þ @ziðnÞ

@siI

@siI

@ciI

	 

¼ � 2 Re½wiðnÞeðnÞ	c0ðziÞ½2ðsiR � biRÞxI þ 2ðsiI � biIÞð�xRÞ	=ða�i aiÞ; ð20Þ

where c0ðxÞ ¼ dcðxÞ=dx; thus we can obtain

ciðn þ 1Þ ¼ ciðnÞ �
1

4
m2rci

EðnÞ

¼ ciðnÞ þ m2 Re½wiðnÞeðnÞ	c0ðziÞðsiðnÞ � biðnÞÞ�xðnÞ=½a�
i ðnÞaiðnÞ	: ð21Þ

The partial derivative with respect to the translation parameters bi is as follows:

rbi
EðnÞ ¼ @EðnÞ

@biR
þ j

@EðnÞ
@biI

¼ @EðnÞ
@hiðnÞ

@hiðnÞ
@ziðnÞ

@zi

@biR
þ j

@EðnÞ
@hiðnÞ

@hiðnÞ
@ziðnÞ

@zi

@biI

¼ 4 Re½wiðnÞeðnÞ	c0ðziÞ
ðsiR � biRÞ

a�
i ai

þ 4j Re½wiðnÞeðnÞ	c0ðziÞ
ðsiI � biIÞ

a�
i ai

¼ 4 Re½wiðnÞeðnÞ	c0ðziÞ
ðsi � biÞ

a�i ai

: ð22Þ

Therefore

biðn þ 1Þ ¼ biðnÞ �
1

4
m3rbi

EðnÞ

¼ biðnÞ � m3 Re½wiðnÞeðnÞ	c0ðziÞðsiðnÞ � biðnÞÞ=½a�
i ðnÞaiðnÞ	: ð23Þ

And

rai
EðnÞ ¼ @EðnÞ

@aiR
þ j

@EðnÞ
@aiI

¼ @EðnÞ
@hiðnÞ

@hiðnÞ
@ziðnÞ

@zi

@aiR
þ j

@EðnÞ
@hiðnÞ

@hiðnÞ
@ziðnÞ

@zi

@aiI

¼ 4 Re½wiðnÞeðnÞ	c0ðziÞ
ðsiðnÞ � biðnÞÞ�ðsiðnÞ � biðnÞÞaiR

ða�
i aiÞ2

þ 4j Re½wiðnÞeðnÞ	c0ðziÞ
ðsiðnÞ � biðnÞÞ�ðsiðnÞ � biðnÞÞaiI

ða�
i aiÞ2

¼ 4 Re½wiðnÞeðnÞ	c0ðziÞ
ðsiðnÞ � biðnÞÞ�ðsiðnÞ � biðnÞÞ

ða�i aiÞ2
ai: ð24Þ
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Hence

aiðn þ 1Þ ¼ aiðnÞ �
1

4
m4rai

EðnÞ

¼ aiðnÞ � m4 Re½wiðnÞeðnÞ	c0ðziÞ
ðsiðnÞ � biðnÞÞ�ðsiðnÞ � biðnÞÞ

ða�i ðnÞaiðnÞÞ2
aiðnÞ: ð25Þ

By selecting the Harr wavelet as the neuron activation function, we can know from (8) and (9)

cðziÞ ¼ ð1� ziÞe�
1
2

zi ð26Þ

and

c0ðziÞ ¼
1

2
zi �

3

2

� �
e�

1
2

zi : ð27Þ

Substituting Eq. (27) into Eqs. (21), (23), (25), we can obtain the parameters adjusting formula.

5. Application to the identification of a nonlinear channel model

The approximation capabilities of the CWN and the efficiency of the complex learning
algorithms are illustrated using an example of modeling a complex-valued nonlinear commu-
nication channels. The scheme of this nonlinear channel is shown in Fig. 3. In current study, the
4-QAM signaling scheme is considered, i.e. the constellation of xðtÞ is shown by

xðtÞ ¼ xRðtÞ þ jxIðtÞ ¼

xð1Þ ¼ 1þ j;

xð2Þ ¼ �1þ j;

xð3Þ ¼ 1� j;

xð4Þ ¼ �1� j:

8>>>><
>>>>:

ð28Þ

The transmitted signals are first passed through a linear FIR filter with transfer function HðzÞ
defined by

HðzÞ ¼ ð1:0119� j0:7589Þ þ ð�0:3796þ j0:5059Þz�1: ð29Þ

HðzÞ has a zero z0 ¼ 0:4801� j0:1399 in the Z-plane. Then signals are passed through a nonlinear
element defined by

nðtÞ ¼ 2uðtÞ
1þ juðtÞj2

exp j
p
3

juðtÞj2

1þ juðtÞj2

 !
: ð30Þ

This static nonlinearity is used to represent the nonlinear high power amplifier in the transmitter,
which is described in literature [12].
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For the purpose of comparison, the tests are between the following two complex-valued neural
network identifiers.

(1) Complex-valued standard 3-layer multilayer perception (MLP) composed of 2 inputs, 10
hidden and 1 output neurons.

(2) CWN composed of 2 inputs, 10 hidden and 1 output neurons.

The networks input vector was defined by xðtÞ ¼ ½xðtÞ; xðt � 1Þ	T : The learning rates mi

ði ¼ 1; 2; 3; 4Þ of CWN are firstly set as 0.1, and the learning rates is divided by 2 every 500
iterations. So were the learning rates of MLP. The learning curves with respect to the learning

ARTICLE IN PRESS

Fig. 4. MSE versus learning iterations, left for MLP and right for CWN.

Fig. 5. State constellation of channel output for the identifiers, (left) no additive noise, (right) SNR ¼ 25 dB: (a) MLP,

(b) CWN.

C. Li et al. / Journal of Computer and System Sciences 67 (2003) 623–632630



iterations are shown in Fig. 4. As we can see from this figure that the CWN has good convergence
behaviors than that of the MLP.
After learning, a forward phase test is performed. The state constellation of channel output is

depicted in Fig. 5, (a) for the MLP and (b) for the CWN (the test data consists 200 points). Two
different cases are reported: case 1 (left) without additive noise and case 2 (right) with SNR ¼
25 dB: It is worth noting that the output constellation when using CWN is less distorted than in
the MLP case.

6. Conclusions

In this paper, we propose a complex-valued wavelet network, whose inputs, outputs and
weights are all complex-valued, and the nonlinear activation function remains real-valued. The
backpropagation learning algorithm for training the complex-valued wavelet network was
derived. The performance of the proposed CWN is illustrated with application to the
identification of complex-valued nonlinear communication channel model. The simulation results
demonstrated that the CWN has powerful approximation ability. In signal processing and
communications where the inputs, outputs and transfer functions of a system are modeled in the
complex domain, the proposed complex wavelet networks provide a useful tool for such cases.
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