443 research outputs found

    HeteFedRec: Federated Recommender Systems with Model Heterogeneity

    Full text link
    Owing to the nature of privacy protection, federated recommender systems (FedRecs) have garnered increasing interest in the realm of on-device recommender systems. However, most existing FedRecs only allow participating clients to collaboratively train a recommendation model of the same public parameter size. Training a model of the same size for all clients can lead to suboptimal performance since clients possess varying resources. For example, clients with limited training data may prefer to train a smaller recommendation model to avoid excessive data consumption, while clients with sufficient data would benefit from a larger model to achieve higher recommendation accuracy. To address the above challenge, this paper introduces HeteFedRec, a novel FedRec framework that enables the assignment of personalized model sizes to participants. In HeteFedRec, we present a heterogeneous recommendation model aggregation strategy, including a unified dual-task learning mechanism and a dimensional decorrelation regularization, to allow knowledge aggregation among recommender models of different sizes. Additionally, a relation-based ensemble knowledge distillation method is proposed to effectively distil knowledge from heterogeneous item embeddings. Extensive experiments conducted on three real-world recommendation datasets demonstrate the effectiveness and efficiency of HeteFedRec in training federated recommender systems under heterogeneous settings

    Probing Interface of Perovskite Oxide Using Surface-specific Terahertz Spectroscopy

    Full text link
    The surface/interface species in perovskite oxides play an essential role in many novel emergent physical phenomena and chemical processes. With low eigen-energy in the terahertz region, such species at buried interfaces remain poorly understood due to the lack of feasible experimental techniques. Here, we show that vibrational resonances and two-dimensional electron gas at the interface can be characterized using surface-specific nonlinear spectroscopy in the terahertz range. This technique uses intra-pulse difference frequency mixing (DFM) process, which is allowed only at surface/interface of a medium with inversion symmetry. Sub-monolayer sensitivity can be achieved using the state-of-the-art detection scheme for the terahertz emission from surface/interface. As a demonstration, Drude-like nonlinear response from the two-dimensional electron gas emerging at LaAlO3/SrTiO3 or Al2O3/ SrTiO3 interface was successfully observed. Meanwhile, the interfacial vibrational spectrum of the ferroelectric soft mode of SrTiO3 at 2.8 THz was also obtained that was polarized by the surface field in the interfacial region. The corresponding surface/interface potential, which is a key parameter for SrTiO3-based interface superconductivity and photocatalysis, can now be determined optically via quantitative analysis on the polarized phonon spectrum. The interfacial species with resonant frequencies in the THz region revealed by our method provide more insights into the understanding of physical properties of complex oxides.Comment: arXiv admin note: substantial text overlap with arXiv:2207.1461

    Salmonella contamination and molecular typing in Huzhou from 2015 to 2021

    Get PDF
    ObjectiveTo understand the pollution status of foodborne pathogens in Huzhou, so as to provide basis for the prevention and control of foodborne diseases.MethodsAccording to GB 4789.4—2016, 1 463 samples in 5 food categories were collected from Huzhou City during 2015—2021 for Salmonella monitoring. Serotype, antibiotic sensitivity test and pulsed field gel electrophoresis (PFGE) were carried out to isolate Salmonella. The results were analyzed by Excel and SPSS 19.0 software.ResultsForty seven Salmonella strains were detected from 1 463 samples and the total detection rate was 3.21%. Among all kinds of food, the detection rate of Salmonella in livestock meat was the highest (6.61%,23/348). A total of 19 serotypes of Salmonella were detected, of which the dominant serotype was Salmonella Typhimurium. Salmonella serotypes detected in various kinds foods were different. Twenty strains of Salmonella isolated from 2019 to 2021 were tested for drug sensitivity and PFGE. The results showed that the isolates had strong resistance to AMP and TET, with resistance rates of 70% (14/20) and 60% (12/20) respectively. Molecular typing showed that after Xba I enzyme digestion, 19 strains of Salmonella produced 11 PFGE bands with high polymorphism.ConclusionFrom 2015 to 2021, Salmonella was detected in five types of food sold in Huzhou City, including two types of ready to eat food (Chinese cold dishes and bulk cooked meat products). The dominant serotype was Salmonella Typhimurium. The positive detection was mainly from farm market, which had potential risk of foodborne diseases. The corresponding monitoring and supervision should be paid attention to

    Self-assembly of hydrofluorinated Janus graphene monolayer:a versatile route for designing novel Janus nanoscrolls

    Get PDF
    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main driving force of the self-assembly. Finally, we studied the hydrogen sorption over the formed J-NS with a considerable interlayer spacing, which reaches the US DOE target, indicating that J-NS is a promising candidate for hydrogen storage by controlling the temperature of system. Our theoretical results firstly provide a versatile route for designing novel J-NS from 2D Janus nanomaterials, which has a great potential application in the realm of hydrogen storage/separation

    A study on the anomaly of pp over π\pi ratios in Au+AuAu+Au collisions with jet quenching

    Full text link
    The ratios of p/πp/\pi at large transverse momentum in central Au+AuAu+Au collisions at RHIC are studied in the framework of jet quenching based on a next-to-leading order pQCD parton model. It is shown that theoretical calculations with a gluon energy loss larger than the quark energy loss will naturally lead to a smaller p/πp/\pi ratios at large transverse momentum in Au+AuAu+Au collisions than those in p+pp+p collisions at the same energy. Scenarios with equal energy losses for gluons and quarks and a strong jet conversion are both explored and it is demonstrated in both scenarios p/πp/\pi ratios at high pTp_T in central Au+AuAu+Au collisions are enhanced and the calculated ratios of protons over pions approach to the experimental measurements. However, pˉ/p{\bar p}/p in the latter scenario is found to fit data better than that in the former scenario.Comment: 20 pages, 13 figures; revised version; accepted for publication in Journal of Physics

    A Highly Selective Colorimetric Sensor for Cysteine in Water Solution and Bovine Serum Albumin

    Get PDF
    A simple colorimetric sensor, 2-bromonaphthalene-1,4-dione, has been developed for the Cysteine detection. The sensor showed its best performance in a mixture of ethanol and HEPES (5 : 5, v/v) solution at pH of 7.0. The results of UV-vis and fluorescence indicated that 2-bromonaphthalene-1,4-dione was selective and sensitive for Cysteine detection without the interference of other amino acids (Cysteine, Alanine, Arginine, Aspartinie, Glutamine, Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Proline, Serine, Threonine, Phenylalanine, Valine, Tryptophan, and Hydroxyproline). 2-Bromonaphthalene-1,4-dione also showed binding ability for Cysteine in bovine serum albumin and could be used as a potential colorimetric sensor among eighteen kinds of natural amino acids. Importantly, the recognition of CySH could be observed by naked eye

    Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease

    Get PDF
    Publisher Copyright: © 2023, The Author(s).Background: Bacterial viruses, phages, play a key role in nutrient turnover and lysis of bacteria in terrestrial ecosystems. While phages are abundant in soils, their effects on plant pathogens and rhizosphere bacterial communities are poorly understood. Here, we used metagenomics and direct experiments to causally test if differences in rhizosphere phage communities could explain variation in soil suppressiveness and bacterial wilt plant disease outcomes by plant-pathogenic Ralstonia solanacearum bacterium. Specifically, we tested two hypotheses: (1) that healthy plants are associated with stronger top-down pathogen control by R. solanacearum-specific phages (i.e. ‘primary phages’) and (2) that ‘secondary phages’ that target pathogen-inhibiting bacteria play a stronger role in diseased plant rhizosphere microbiomes by indirectly ‘helping’ the pathogen. Results: Using a repeated sampling of tomato rhizosphere soil in the field, we show that healthy plants are associated with distinct phage communities that contain relatively higher abundances of R. solanacearum-specific phages that exert strong top-down pathogen density control. Moreover, ‘secondary phages’ that targeted pathogen-inhibiting bacteria were more abundant in the diseased plant microbiomes. The roles of R. solanacearum-specific and ‘secondary phages’ were directly validated in separate greenhouse experiments where we causally show that phages can reduce soil suppressiveness, both directly and indirectly, via top-down control of pathogen densities and by alleviating interference competition between pathogen-inhibiting bacteria and the pathogen. Conclusions: Together, our findings demonstrate that soil suppressiveness, which is most often attributed to bacteria, could be driven by rhizosphere phage communities that regulate R. solanacearum densities and strength of interference competition with pathogen-suppressing bacteria. Rhizosphere phage communities are hence likely to be important in determining bacterial wilt disease outcomes and soil suppressiveness in agricultural fields. [MediaObject not available: see fulltext.].Peer reviewe
    • …
    corecore