188 research outputs found
Bubble size and bubble rise velocity estimation by means of electrical capacitance tomography within gas-solids fluidized beds
Electrical capacitance tomography (ECT) has been developed as a non-invasive and non-intrusive measurement technique to investigate the internal hydrodynamic characteristics of gas-solids systems in fluidized beds. This paper describes an investigation, in which a customized twin-plane ECT sensor was designed and constructed to study the fluid flow processes within a bench-scale gas-solids fluidized bed. A detailed calibration process was conducted using hollow plastic balls of different diameters to derive the reference grey level cut-off values for determining the bubble diameter. In addition, numerical simulations were carried out to investigate the plastic ball wall effect on measured capacitance values. Bubble diameters were estimated by means of the individual reference cut-off values and their linear and second-order fitted curves. Linear back-projection (LBP) and iterative LBP image reconstruction algorithms were compared with respect to estimating the bubble diameter. A number of approaches were investigated to estimate the bubble rise velocity including three methods based on cross-correlation techniques and the detailed signal analysis. Bubble diameters were also obtained using a new approach based on “back-calculation” of the bubble rise velocity through widely accepted empirical correlations from the existing literature
Superhumps in a Peculiar SU UMa-Type Dwarf Nova ER Ursae Majoris
We report the photometry of a peculiar SU UMa-type dwarf nova - ER UMa for
ten nights during 1998 December and 1999 March covering a complete rise to the
supermaximum and a normal outburst cycle. Superhumps have been found during the
rise to the superoutburst. A negative superhump appeared in Dec.22 light curve,
while the superhump on the next night became positive and had large amplitude
and distinct waveform from that of the previous night. In the normal outburst
we captured, superhumps with larger or smaller amplitudes seem to always exist,
although it is not necessarily true for every normal outburst. These results
show great resemblance with V1159 Ori (Patterson et al. 1995). It is more
likely that superhumps occasionally exist at essentially all phases of the
eruption cycles of ER UMa stars, which should be considered in modeling.Comment: 4 pages, 5 figures, Accepted by ApJ Letter
Lactylation: The emerging frontier in post-translational modification
Lactate, a metabolic byproduct, has gained recognition as a highly influential signaling molecule. Lactylation, an emerging form of post-translational modification derived from lactate, plays a crucial role in numerous cellular processes such as inflammation, embryonic development, tumor proliferation, and metabolism. However, the precise molecular mechanisms through which lactylation governs these biological functions in both physiological and pathological contexts remain elusive. Hence, it is imperative to provide a comprehensive overview of lactylation in order to elucidate its significance in biological processes and establish a foundation for forthcoming investigations. This review aims to succinctly outline the process of lactylation modification and the characterization of protein lactylation across diverse organisms. Additionally, A summary of the regulatory mechanisms of lactylation in cellular processes and specific diseases is presented. Finally, this review concludes by delineating existing research gaps in lactylation and proposing primary directions for future investigations
Development and assessment of two-stage thermoacoustic electricity generator
This paper presents the development and assessment of a two-stage thermoacoustic electricity generator that aims to mimic the conversion of waste heat from the internal combustion engine exhaust gases into useful electricity. The one wavelength configuration consists of two identical stages which allow coupling a linear alternator in a “push-pull” mode because of the 180 ◦ out of phase acoustic excitation on two sides of the piston. This type of coupling is a possible solution for the low acoustic impedance of looped-tube traveling-wave thermoacoustic engines. The experimental set-up is 16.1 m long and runs at 54.7 Hz. The working medium is helium at maximum pressure of 28 bar. In practice, the maximum generated electric power was 73.3 W at 5.64% thermal-to-electric efficiency. The working parameters, namely load resistance, mean pressure and heating power, were investigated. System debugging illustrates the effect of local acoustic impedance of the regenerator on the start-up process of the thermoacoustic engine. The additional modelling showed that the feedback loop length can be reduced by using a combination of acoustic inertance and compliance components
Case Report: A Clinical and Genetic Analysis of Childhood Growth Hormone Deficiency With Familial Hypercholesterolemia
BackgroundGrowth hormone deficiency (GHD) is a developmental disorder in children characterized by low growth hormone (GH), short stature and unfavorable lipid profiles. Familial hypercholesteremia (FH) is an inborn disorder of low-density lipoprotein cholesterol (LDL-C) metabolism which results in premature cardiovascular events. The co-occurrence of GHD and FH, which may aggravate the hypercholesteremic condition in the affected individuals, had rarely been discussed in previous publication.MethodsThis work reports two cases of GHD with FH, and explores the lipid profiles of GHD children and their therapeutic response to recombinant human growth hormone (rhGH). The diagnosis of GHD is based on low peak GH level (<7 ng/mL) in GH provocation test. FH is diagnosed by high LDL-C level (≥ 4 mmol/L) and confirmed genetic mutations in the LDL-C metabolic pathway. We also searched all previously published metabolic studies on GHD children as of December 31, 2020. Information on their LDL-C, duration and dose of rhGH treatment were retrieved and summarized.ResultsThe first case was a 5.3 year-old boy. His height was 103.6 cm (SDS = -2.29) and his peak GH in provocative test was 6.37 ng/mL. Additionally, his LDL-C was 4.80 mmol/L and he harbored a heterozygous mutation for the apolipoprotein B (APOB) gene (c.10579 C > T). The second case was a 9-year-old girl at the height of 117.3 cm (SDS = -2.91). Her GH peaked at 4.99 ng/mL in insulin-induced hypoglycemic test and 2.80 ng/mL in L-dopa test. Her LDL-C was 6.16 mmol/L, and she carried a mutated copy of the low-density lipoprotein receptor (LDLR) gene (c.809 G > A). Literature review indicated that GHD children suffered from higher baseline LDL-C, but it was significantly reduced after rhGH treatment.ConclusionsFH should be considered if a GHD child has remarkably elevated LDL-C that cannot be attributed to low GH level alone. Genetic mutations in the LDL-C metabolic pathway prevent the body from effectively metabolizing lipids, thereby resulting in early-onset hypercholesteremia and probably playing a negative role in children’s growth
SurrealDriver: Designing Generative Driver Agent Simulation Framework in Urban Contexts based on Large Language Model
Simulation plays a critical role in the research and development of
autonomous driving and intelligent transportation systems. However, the current
simulation platforms exhibit limitations in the realism and diversity of agent
behaviors, which impede the transfer of simulation outcomes to the real world.
In this paper, we propose a generative driver agent simulation framework based
on large language models (LLMs), capable of perceiving complex traffic
scenarios and providing realistic driving maneuvers. Notably, we conducted
interviews with 24 drivers and used their detailed descriptions of driving
behavior as chain-of-thought prompts to develop a `coach agent' module, which
can evaluate and assist driver agents in accumulating driving experience and
developing human-like driving styles. Through practical simulation experiments
and user experiments, we validate the feasibility of this framework in
generating reliable driver agents and analyze the roles of each module. The
results show that the framework with full architect decreased the collision
rate by 81.04% and increased the human-likeness by 50%. Our research proposes
the first urban context driver agent simulation framework based on LLMs and
provides valuable insights into the future of agent simulation for complex
tasks.Comment: 12 pages, 8 figure
A Consumer-tier based Visual-Brain Machine Interface for Augmented Reality Glasses Interactions
Objective.Visual-Brain Machine Interface(V-BMI) has provide a novel
interaction technique for Augmented Reality (AR) industries. Several
state-of-arts work has demonstates its high accuracy and real-time interaction
capbilities. However, most of the studies employ EEGs devices that are rigid
and difficult to apply in real-life AR glasseses application sceniraros. Here
we develop a consumer-tier Visual-Brain Machine Inteface(V-BMI) system
specialized for Augmented Reality(AR) glasses interactions. Approach. The
developed system consists of a wearable hardware which takes advantages of fast
set-up, reliable recording and comfortable wearable experience that
specificized for AR glasses applications. Complementing this hardware, we have
devised a software framework that facilitates real-time interactions within the
system while accommodating a modular configuration to enhance scalability. Main
results. The developed hardware is only 110g and 120x85x23 mm, which with 1
Tohm and peak to peak voltage is less than 1.5 uV, and a V-BMI based angry bird
game and an Internet of Thing (IoT) AR applications are deisgned, we
demonstrated such technology merits of intuitive experience and efficiency
interaction. The real-time interaction accuracy is between 85 and 96
percentages in a commercial AR glasses (DTI is 2.24s and ITR 65 bits-min ).
Significance. Our study indicates the developed system can provide an essential
hardware-software framework for consumer based V-BMI AR glasses. Also, we
derive several pivotal design factors for a consumer-grade V-BMI-based AR
system: 1) Dynamic adaptation of stimulation patterns-classification methods
via computer vision algorithms is necessary for AR glasses applications; and 2)
Algorithmic localization to foster system stability and latency reduction.Comment: 15 pages,10 figure
Subsequent cooling-circulation after radiofrequency and microwave ablation avoids secondary indirect damage induced by residual thermal energy
PURPOSEWe aimed to investigate the exact role of residual thermal energy following microwave ablation (MWA) and radiofrequency ablation (RFA) at the final ablation and transition zones and determine whether residual thermal energy could be dissipated by subsequent cooling-circulation.METHODSIn an ex vivo study, MWA and RFA were performed on fresh porcine liver, and central and border temperatures were compared. In an in vivo study, MWA and RFA were performed to the livers of New Zealand white rabbits. Tissue samples were stained with α-NADH-diaphorase. The coagulation zones (NADH-negative) and transition zones (lightly NADH-stained) of different groups were compared at different time points.RESULTSIn the ex vivo model, the residual thermal energy after MWA and RFA could be dispersed by subsequent cooling-circulation due to the temperature decreasing rapidly. In the in vivo study, the coagulation volume in the ablation group was larger than that in the cooling-circulation group (P < 0.05) 2 days after ablation. In the ablation group, the damaged zone (the transition zone plus the coagulation zone) on α-NADH-diaphorase-stained images increased rapidly within 2 hours after ablation and slowly reached the maximum on day 2. However, the damaged zones did not change significantly at the three time points observed in the cooling-circulation group.CONCLUSIONThe residual thermal energy in MWA and RFA induced secondary damage beyond the direct coagulation zone, and it could be dissipated by subsequent cooling-circulation, contributing to smaller ablation and transition zones
- …