1,792 research outputs found

    Accelerated Testing Method for PEM Fuel Cell based Uninterrupted Power Supply Systems

    Get PDF
    Proton exchange membrane fuel cell based power systems are on the verge of commercialization for a number of niche applications where batteries are traditionally used. Uninterrupted power supply (UPS) for wireless communication towers and broadband network relay utilities is one of the targeted application of fuel cell power systems with capacity ranging from one to serveral kilowatts. It is believed that fuel cell based UPS systems can offer considerable advantage when extended backup time is desirable. In order to replace the well-known battery based UPS systems, the reliability and perofrmance of fuel cell based UPS system need to be thoroughly evaluated by preferrably independent testing laboratories. Accelerated testing is frequently needed in light of the time constraints in typical product development cycles

    Crystal structure and electronic structure of quaternary semiconductors Cu2_2ZnTiSe4_4 and Cu2_2ZnTiS4_4 for solar cell absorber

    Full text link
    We design two new I2-II-IV-VI4 quaternary semiconductors Cu2_2ZnTiSe4_4 and Cu2_2ZnTiS4_4, and systematically study the crystal and electronic structure by employing first-principles electronic structure calculations. Among the considered crystal structures, it is confirmed that the band gaps of Cu2_2ZnTiSe4_4 and Cu2_2ZnTiS4_4 originate from the full occupied Cu 3dd valence band and unoccupied Ti 3dd conducting band, and kesterite structure should be the ground state. Furthermore, our calculations indicate that Cu2_2ZnTiSe4_4 and Cu2_2ZnTiS4_4 have comparable band gaps with Cu2_2ZnTSe4_4 and Cu2_2ZnTS4_4, but almost twice larger absorption coefficient α(ω)\alpha(\omega). Thus, the materials are expected to be candidate materials for solar cell absorber.Comment: 4 pages, 4 figure

    Lp⃗−Lq⃗L^{\vec{p}}-L^{\vec{q}} Boundedness of Multiparameter Forelli-Rudin Type Operators on the Product of Unit Balls of Cn\mathbb{C}^n

    Full text link
    In this work, we provide a complete characterization of the boundedness of two classes of multiparameter Forelli-Rudin type operators from one mixed-norm Lebesgue space Lp⃗L^{\vec p} to another space Lq⃗L^{\vec q}, when 1≤p⃗≤q⃗<∞1\leq \vec{p}\leq \vec q<\infty, equipped with possibly different weights. Using these characterizations, we establish the necessary and sufficient conditions for both Lp⃗−Lq⃗L^{\vec p}-L^{\vec q} boundedness of the weighted multiparameter Berezin transform and Lp⃗−Aq⃗L^{\vec p}-A^{\vec q} boundedness of the weighted multiparameter Bergman projection, where Aq⃗A^{\vec q} denotes the mixed-norm Bergman space. Our approach presents several novelties. Firstly, we conduct refined integral estimates of holomorphic functions on the unit ball in Cn\mathbb{C}^n. Secondly, we adapt the classical Schur's test to different weighted mixed-norm Lebesgue spaces. These improvements are crucial in our proofs and allow us to establish the desired characterization and sharp conditions.Comment: 42 page

    The Boundedness and Exponential Stability Criterions for Nonlinear Hybrid Neutral Stochastic Functional Differential Equations

    Get PDF
    Neutral differential equations have been used to describe the systems that not only depend on the present and past states but also involve derivatives with delays. This paper considers hybrid nonlinear neutral stochastic functional differential equations (HNSFDEs) without the linear growth condition and examines the boundedness and exponential stability. Two illustrative examples are given to show the effectiveness of our theoretical results

    Estimating Properties of Solid Particles Inside Container Using Touch Sensing

    Full text link
    Solid particles, such as rice and coffee beans, are commonly stored in containers and are ubiquitous in our daily lives. Understanding those particles' properties could help us make later decisions or perform later manipulation tasks such as pouring. Humans typically interact with the containers to get an understanding of the particles inside them, but it is still a challenge for robots to achieve that. This work utilizes tactile sensing to estimate multiple properties of solid particles enclosed in the container, specifically, content mass, content volume, particle size, and particle shape. We design a sequence of robot actions to interact with the container. Based on physical understanding, we extract static force/torque value from the F/T sensor, vibration-related features and topple-related features from the newly designed high-speed GelSight tactile sensor to estimate those four particle properties. We test our method on 3737 very different daily particles, including powder, rice, beans, tablets, etc. Experiments show that our approach is able to estimate content mass with an error of 1.81.8 g, content volume with an error of 6.16.1 ml, particle size with an error of 1.11.1 mm, and achieves an accuracy of 75.675.6% for particle shape estimation. In addition, our method can generalize to unseen particles with unknown volumes. By estimating these particle properties, our method can help robots to better perceive the granular media and help with different manipulation tasks in daily life and industry.Comment: 8 pages, 14 figure

    Heat Transfer of Helix Energy Pile: Part 2—Novel Truncated Cone Helix Energy Pile

    Get PDF
    Owing to the fact that severe thermal interferences exist in the radial and generatrix directions of the traditional cylinder helix energy pile due to the limited thermal heat capacity of the pile and small ratio between coil pitch and radius of pile, therefore, a novel truncated cone helix energy pile (CoHEP) is presented to weaken the thermal interferences and improve the heat transfer efficiency. Further, both the analytical solution model and numerical solution model for CoHEP are built to discuss the dynamic characteristics of thermal interferences and heat transfer performance. The results indicate that the thermal interference of CoHEP is dynamic. The thermal interference in the upper part of the CoHEP is much smaller than the traditional CyHEP. And in general the heat flux per unit pipe length of the novel CoHEP is larger than that of the traditional CyHEP. Heat flux per unit pipe length of the CoHEP increases linearly with inlet water temperature. For the same inlet water temperature, the thermal short circuit is serious at the bottom of the CoHEP, and it’s weak in the upper part of CoHEP. Also it’s obvious that as the inlet water temperature increases, the thermal short circuit becomes more serious

    Heat Transfer of Helix Energy Pile: Part 1: Traditional Cylinder Helix Energy Pile

    Get PDF
    Helix energy pile (HEP) is a new popular ground heat exchanger that has the advantages of large heat exchange rate and low initial cost. As for the traditional helix energy pile, the tube is wound on the cylindrical wall, which is called the cylinder helix energy pile (CyHEP). Further, both analytical solution model and numerical solution model for CyHEP are built to discuss the dynamic characteristics of thermal interferences and heat transfer performance. The results indicate that four heat exchange stages for the spiral pile geothermal heat exchanger along the fluid flow direction are revealed: inlet heat exchange stage, grout thermal short-circuiting stage, small temperature difference stage and outlet heat exchange stage. Each stage has corresponding heat transfer characteristics, and reducing the length of small temperature difference stage and increasing the other stages would enhance the heat exchange of spiral geothermal ground heat exchanger. As the pile diameter increases, the heat transfer per unit tube length decreases, and the heat exchange per unit pile depth increases. As the pile depth increases, the heat transfer per unit tube length and the heat exchange per unit pile depth are reduced. And as the pitch increases, the heat transfer per unit tube length increases, and the heat exchange per unit pile depth decreases

    Searching for Stable Si\u3csub\u3en\u3c/sub\u3eC\u3csub\u3en\u3c/sub\u3e Clusters: Combination of Stochastic Potential Surface Search and Pseudopotential Plane-Wave Car-Parinello Simulated Annealing Simulations

    Get PDF
    To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA). We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12) clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region
    • …
    corecore