31,672 research outputs found
Instance and Output Optimal Parallel Algorithms for Acyclic Joins
Massively parallel join algorithms have received much attention in recent
years, while most prior work has focused on worst-optimal algorithms. However,
the worst-case optimality of these join algorithms relies on hard instances
having very large output sizes, which rarely appear in practice. A stronger
notion of optimality is {\em output-optimal}, which requires an algorithm to be
optimal within the class of all instances sharing the same input and output
size. An even stronger optimality is {\em instance-optimal}, i.e., the
algorithm is optimal on every single instance, but this may not always be
achievable.
In the traditional RAM model of computation, the classical Yannakakis
algorithm is instance-optimal on any acyclic join. But in the massively
parallel computation (MPC) model, the situation becomes much more complicated.
We first show that for the class of r-hierarchical joins, instance-optimality
can still be achieved in the MPC model. Then, we give a new MPC algorithm for
an arbitrary acyclic join with load O ({\IN \over p} + {\sqrt{\IN \cdot \OUT}
\over p}), where \IN,\OUT are the input and output sizes of the join, and
is the number of servers in the MPC model. This improves the MPC version of
the Yannakakis algorithm by an O (\sqrt{\OUT \over \IN} ) factor.
Furthermore, we show that this is output-optimal when \OUT = O(p \cdot \IN),
for every acyclic but non-r-hierarchical join. Finally, we give the first
output-sensitive lower bound for the triangle join in the MPC model, showing
that it is inherently more difficult than acyclic joins
Glutathione Metabolism in Renal Cell Carcinoma Progression and Implications for Therapies
A significantly increased level of the reactive oxygen species (ROS) scavenger glutathione (GSH) has been identified as a hallmark of renal cell carcinoma (RCC). The proposed mechanism for increased GSH levels is to counteract damaging ROS to sustain the viability and growth of the malignancy. Here, we review the current knowledge about the three main RCC subtypes, namely clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC), at the genetic, transcript, protein, and metabolite level and highlight their mutual influence on GSH metabolism. A further discussion addresses the question of how the manipulation of GSH levels can be exploited as a potential treatment strategy for RCC
Decay process of quantum open system at finite-temperature
Starting from the formal solution to the Heisenberg equation, we revisit an
universal model for a quantum open system with a harmonic oscillator linearly
coupled to a boson bath. The analysis of the decay process for a Fock state and
a coherent state demonstrate that this method is very useful in dealing with
the problems in decay process of the open system. For finite temperature, the
calculations of the reduced density matrix and the mean excitation number for
the open system show that an initial coherent state will evolve into a
temperature-dependant coherent state after tracing over the bath variables.
Also in short-time limit, a temperature-dependant effective Hamiltonian for the
open system characterizes the decay process of the open system
- …