5,266 research outputs found

    The Nonlinear Permittivity Including Non-Abelian Self-interaction of Plasmons in Quark-Gluon Plasma

    Get PDF
    By decomposing the distribution functions and color field to regular and fluctuation parts, the solution of the semi-classical kinetic equations of quark-gluon plasma is analyzed. Through expanding the kinetic equations of the fluctuation parts to third order, the nonlinear permittivity including the self-interaction of gauge field is obtained and a rough numerical estimate is given out for the important \vk =0 modes of the pure gluon plasma.Comment: 7 pages, shortened version accepted by Chin.Phys.Let

    Exact calculations of vertex sˉγb\bar{s}\gamma b and sˉZb\bar{s} Z b in the unitary gauge

    Full text link
    In this paper, we present the exact calculations for the vertex sˉγb\bar{s}\gamma b and sˉZb\bar{s} Z b in the unitary gauge. We found that (a) the divergent- and μ\mu-dependent terms are left in the effective vertex function Γμγ(p,k)\Gamma^\gamma_\mu(p,k) for bsγb \to s \gamma transition even after we sum up the contributions from four related Feynman diagrams; (b) for an on-shell photon, such terms do not contribute et al; (c) for off-shell photon, these terms will be canceled when the contributions from both vertex sˉγb\bar{s}\gamma b and sˉZb\bar{s} Z b are taken into account simultaneously, and therefore the finite and gauge independent function Z0(xt)=C0(xt)+D0(xt)/4Z_0(x_t)=C_0(x_t)+ D_0(x_t)/4, which governs the semi-leptonic decay bsll+b \to s l^- l^+, is derived in the unitary gauge.Comment: 13 pages, 2 figures, Revte

    Non-Abelian Collective Excitations in Unlinearized Quark-Gluon Plasma Media

    Get PDF
    We study the effect of unlinearized medium on the collective excitations in quark-gluon plasma. We present two kinds of non-Abelian oscillation solutions which respectively correspond to weakly and strongly nonlinear coupling of field components in color space. We also show that the weakly nonlinear solution is similar to Abelian-like one but has the frequency shift, which is of order g2Tg^2T, from eigenfrequency.Comment: 7 page

    Dephasing time of disordered two-dimensional electron gas in modulated magnetic fields

    Full text link
    The dephasing time of disordered two-dimensional electron gas in a modulated magnetic field is studied. It is shown that in the weak inhomogeneity limit, the dephasing rate is proportional to the field amplitude, while in strong inhomogeneity limit the dependence is quadratic. It is demonstrated that the origin of the dependence of dephasing time on field amplitude lies in the nature of corresponding single-particle motion. A semiclassical Monte Carlo algorithm is developed to study the dephasing time, which is of qualitative nature but efficient in uncovering the dependence of dephasing time on field amplitude for arbitrarily complicated magnetic-field modulation. Computer simulations support analytical results. The crossover from linear to quadratic dependence is then generalized to the situation with magnetic field modulated periodically in one direction with zero mean, and it is argued that this crossover can be expected for a large class of modulated magnetic fields.Comment: 8 pages, 2 figure

    Abnormal magnetoresistance behavior in Nb thin film with rectangular antidot lattice

    Full text link
    Abnormal magnetoresistance behavior is found in superconducting Nb films perforated with rectangular arrays of antidots (holes). Generally magnetoresistance were always found to increase with increasing magnetic field. Here we observed a reversal of this behavior for particular in low temperature or current density. This phenomenon is due to a strong 'caging effect' which interstitial vortices are strongly trapped among pinned multivortices.Comment: 4 pages, 2 figure

    Some properties of the newly observed X(1835) state at BES

    Full text link
    Recently the BES collaboration has announced observation of a resonant state in the π+πη\pi^+\pi^- \eta' spectrum in J/ψγπ+πηJ/\psi \to \gamma \pi^+\pi^-\eta' decay. Fitting the data with a 0+0^{-+} state, the mass is determined to be 1833.7 MeV with 7.7σ7.7\sigma statistic significance. This state is consistent with the one extracted from previously reported ppˉp \bar p threshold enhancement data in J/ψγppˉJ/\psi \to \gamma p \bar p. We study the properties of this state using QCD anomaly and QCD sum rules assuming X(1835) to be a pseudoscalar and show that it is consistent with data. We find that this state has a sizeable matrix element leading to branching ratios of (2.617.37)×103(2.61\sim 7.37)\times 10^{-3} and (2.2110.61)×102(2.21\sim 10.61)\times 10^{-2} for J/ψγGpJ/\psi \to \gamma G_p and for Gpπ+πηG_p \to \pi^+\pi^- \eta', respectively. Combining the calculated branching ratio of J/ψγGpJ/\psi \to \gamma G_p and data on threshold enhancement in J/ψγppˉJ/\psi \to \gamma p \bar p, we determine the coupling for GpppˉG_p- p-\bar p interaction. We finally study branching ratios of other J/ψγ+threemesonsJ/\psi \to \gamma + {three mesons} decay modes. We find that J/ψγGpγ(π+πη,KKπ0)J/\psi \to \gamma G_p \to \gamma (\pi^+\pi^- \eta, K K \pi^0) can provide useful tests for the mechanism proposed.Comment: 13 pages, 3 figures. The final version to appear at EPJ

    Recurrence and Polya number of general one-dimensional random walks

    Full text link
    The recurrence properties of random walks can be characterized by P\'{o}lya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we consider recurrence properties for a general 1D random walk on a line, in which at each time step the walker can move to the left or right with probabilities ll and rr, or remain at the same position with probability oo (l+r+o=1l+r+o=1). We calculate P\'{o}lya number PP of this model and find a simple expression for PP as, P=1ΔP=1-\Delta, where Δ\Delta is the absolute difference of ll and rr (Δ=lr\Delta=|l-r|). We prove this rigorous expression by the method of creative telescoping, and our result suggests that the walk is recurrent if and only if the left-moving probability ll equals to the right-moving probability rr.Comment: 3 page short pape

    Environmental Effect on the Associations of Background Quasars with Foreground Objects: II. Numerical Simulations

    Full text link
    Using numerical simulations of cluster formation in the standard CDM model (SCDM) and in a low-density, flat CDM model with a cosmological constant (LCDM), we investigate the gravitational lensing explanation for the reported associations between background quasars and foreground clusters. Under the thin-lens approximation and the unaffected background hypothesis , we show that the recently detected quasar overdensity around clusters of galaxies on scales of 10\sim10 arcminutes cannot be interpreted as a result of the gravitational lensing by cluster matter and/or by their environmental and projected matter along the line of sight, which is consistent with the analytical result based on the observed cluster and galaxy correlations (Wu, et al. 1996). It appears very unlikely that uncertainties in the modeling of the gravitational lensing can account for the disagreement between the theoretical predictions and the observations. We conclude that either the detected signal of the quasar-cluster associations is a statistical fluke or the associations are are generated by mechanisms other than the magnification bias.Comment: 15 pages, 5 figures, accepted for publication in Ap
    corecore