293 research outputs found
Implications of 3-step swimming patterns in bacterial chemotaxis
We recently found that marine bacteria Vibrio alginolyticus execute a cyclic
3-step (run- reverse-flick) motility pattern that is distinctively different
from the 2-step (run-tumble) pattern of Escherichia coli. How this novel
swimming pattern is regulated by cells of V. alginolyticus is not currently
known, but its significance for bacterial chemotaxis is self- evident and will
be delineated herein. Using an approach introduced by de Gennes, we calculated
the migration speed of a cell executing the 3-step pattern in a linear chemical
gradient, and found that a biphasic chemotactic response arises naturally. The
implication of such a response for the cells to adapt to ocean environments and
its possible connection to E. coli 's response are also discussed.Comment: 18 pages, 4 figures, submitted to biophysical journa
Bacterial Motility Patterns Reveal Importance of Exploitation over Exploration in Marine Microhabitats. Part I: Theory
AbstractBacteria use different motility patterns to navigate and explore natural habitats. However, how these motility patterns are selected, and what their benefits may be, are not understood. In this article, we analyze the effect of motility patterns on a cell’s ability to migrate in a chemical gradient and to localize at the top of the gradient, the two most important characteristics of bacterial chemotaxis. We will focus on two motility patterns, run-tumble and run-reverse-flick, that are observed and characterized in enteric bacterium Escherichia coli and marine bacterium Vibrio alginolyticus, respectively. To make an objective comparison, master equations are developed on the basis of microscopic motions of the bacteria. An unexpected yet significant result is that by adopting the run-reverse-flick motility pattern, a bacterium can reduce its diffusivity without compromising its drift in the chemical gradient. This finding is biologically important as it suggests that the motility pattern can improve a microorganism’s ability to sequester nutrients in a competitive environment
Dynamic bandwidth allocation using infinitesimal perturbation analysis
Advances in network management and switching technologies make dynamic bandwidth allocation of logical networks built on top of a physical network possible. Previous proposed dynamic bandwidth allocation algorithms are based on simplified network model. The analytical model is valid only under restrictive assumptions. Infinitesimal Perturbation Analysis, a technique which estimates the gradients of the functions in discrete event dynamic systems by passively observing the system, is used to estimate delay sensitivities under general traffic patterns. A new dynamic bandwidth allocation algorithm using on-line sensitivity estimation is proposed. Simulation results show that the approach further improves network performance. Implementation of the proposed algorithm in operational networks is also discussed.published_or_final_versio
An Element of Determinism in a Stochastic Flagellar Motor Switch
Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements
Chiral Symmetry Breaking in Crystal Growth: Is Hydrodynamic Convection Relevant?
The effects of mechanical stirring on nucleation and chiral symmetry breaking have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). In contrast to earlier findings, our experiment suggests that the symmetry breaking may have little to do with hydrodynamic convection. Rather the effect can be reasonably accounted for by mechanical damage to incipient crystals. The catastrophic events, creating numerous small 'secondary' crystals, produce statistical domination of one chiral species over the other. Our conclusion is supported by a number of observations using different mixing mechanisms
Nucleation and chiral symmetry breaking under controlled hydrodynamic flows
The effects of hydrodynamic convection on nucleation and broken chiral symmetry have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). Our experiment suggests that the symmetry breaking is a result of hydrodynamic amplification of rare nucleation events. The effect is more pronounced when the primary nucleation occurs on the solute-vapor interface, where mixing in the surface sublayer becomes important. The transition from the achiral to the chiral states appears to be smooth as the hydrodynamic parameters, such as flow rate, are varied
Biophysical basis for convergent evolution of two veil-forming microbes
Microbes living in stagnant water typically rely on chemical diffusion to draw nutrients from their environment. The sulfur-oxidizing bacterium Thiovulum majus and the ciliate Uronemella have independently evolved the ability to form a ‘veil’, a centimetre-scale mucous sheet on which cells organize to produce a macroscopic flow. This flow pulls nutrients through the community an order of magnitude faster than diffusion. To understand how natural selection led these microbes to evolve this collective behaviour, we connect the physical limitations acting on individual cells to the cell traits. We show how diffusion limitation and viscous dissipation have led individual T. majus and Uronemella cells to display two similar characteristics. Both of these cells exert a force of approximately 40 pN on the water and attach to boundaries by means of a mucous stalk. We show how the diffusion coefficient of oxygen in water and the viscosity of water define the force the cells must exert. We then show how the hydrodynamics of filter-feeding orient a microbe normal to the surface to which it attaches. Finally, we combine these results with new observations of veil formation and a review of veil dynamics to compare the collective dynamics of these microbes. We conclude that this convergent evolution is a reflection of similar physical limitations imposed by diffusion and viscosity acting on individual cells
- …