359 research outputs found

    High-throughput analysis of spatio-temporal dynamics in Dictyostelium

    Get PDF
    A time-lapse based approach is presented that allows a rapid examination of the spatio-temporal dynamics of Dictyostelium cell populations, enabling users to search and retrieve movies on a gene-by-gene and phenotype-by-phenotype basis

    Unbalanced-basis-misalignment tolerant measurement-device-independent quantum key distribution

    Full text link
    Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side. However, the protocol still keeps the strict assumptions on the source side that the four BB84-states must be perfectly prepared to ensure security. Some protocols release part of the assumptions in the encoding system to keep the practical security, but the performance would be dramatically reduced. In this work, we present a MDIQKD protocol that requires less knowledge of encoding system to combat the troublesome modulation errors and fluctuations. We have also experimentally demonstrated the protocol. The result indicates the high-performance and good security for its practical applications. Besides, its robustness and flexibility exhibit a good value for complex scenarios such as the QKD networks.Comment: 22 pages, 9 figure

    Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy

    Get PDF
    Background and purpose To recommend contouring methods and atlas of organs at risk (OARs) for nasopharyngeal carcinoma (NPC) patients receiving intensity-modulated radiotherapy, in order to help reach a consensus on interpretations of OARs delineation. Methods and materials Two to four contouring methods for the middle ear, inner ear, temporal lobe, parotid gland and spinal cord were identified via systematic literature review; their volumes and dosimetric parameters were compared in 41 patients. Areas under the receiver operating characteristic curves for temporal lobe contouring were compared in 21 patients with unilateral temporal lobe necrosis (TLN). Results Various contouring methods for the temporal lobe, middle ear, inner ear, parotid gland and spinal cord lead to different volumes and dosimetric parameters (P < 0.05). For TLN, D1 of PRV was the most relevant dosimetric parameter and 64 Gy was the critical point. We suggest contouring for the temporal lobe, middle ear, inner ear, parotid gland and spinal cord. A CT-MRI fusion atlas comprising 33 OARs was developed. Conclusions Different dosimetric parameters may hinder the dosimetric research. The present recommendation and atlas, may help reach a consensus on subjective interpretation of OARs delineation to reduce inter-institutional differences in NPC patients. © 2013 Elsevier Ireland Ltd. All rights reserved.published_or_final_versio

    Glass transitions in native silk fibres studied by dynamic mechanical thermal analysis

    Get PDF
    Silks are a family of semi-crystalline structural materials, spun naturally by insects, spiders and even crustaceans. Compared to the characteristic β-sheet crystalline structure in silks, the non-crystalline structure and its composition deserves more attention as it is equally critical to the filaments' high toughness and strength. Here we further unravel the structure-property relationship in silks using Dynamic Mechanical Thermal Analysis (DMTA). This technique allows us to examine the most important structural relaxation event of the disordered structure the disordered structure, the glass transition (GT), in native silk fibres of the lepidopteran Bombyx mori and Antheraea pernyi and the spider Nephila edulis. The measured glass transition temperature Tg, loss tangent tan δ and dynamic storage modulus are quantitatively modelled based on Group Interaction Modelling (GIM). The "variability" issue in native silks can be conveniently explained by the different degrees of structural disorder as revealed by DMTA. The new insights will facilitate a more comprehensive understanding of the structure-property relations for a wide range of biopolymers

    Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    Get PDF
    BACKGROUND: Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re-sequencing accessions, which represent wild, domesticated landrace, and Chinese elite soybean populations were analyzed. RESULTS: A total of 5,102,244 single nucleotide polymorphisms (SNPs) and 707,969 insertion/deletions were identified. Among the SNPs detected, 25.5% were not described previously. We found that artificial selection during domestication led to more pronounced reduction in the genetic diversity of soybean than the switch from landraces to elite cultivars. Only a small proportion (2.99%) of the whole genomic regions appear to be affected by artificial selection for preferred agricultural traits. The selection regions were not distributed randomly or uniformly throughout the genome. Instead, clusters of selection hotspots in certain genomic regions were observed. Moreover, a set of candidate genes (4.38% of the total annotated genes) significantly affected by selection underlying soybean domestication and genetic improvement were identified. CONCLUSIONS: Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes/loci underlying agronomically important traits

    Identification of <em>CHIP</em> as a novel causative gene for autosomal recessive cerebellar ataxia

    Get PDF
    Autosomal recessive cerebellar ataxias are a group of neurodegenerative disorders that are characterized by complex clinical and genetic heterogeneity. Although more than 20 disease-causing genes have been identified, many patients are still currently without a molecular diagnosis. In a two-generation autosomal recessive cerebellar ataxia family, we mapped a linkage to a minimal candidate region on chromosome 16p13.3 flanked by single-nucleotide polymorphism markers rs11248850 and rs1218762. By combining the defined linkage region with the whole-exome sequencing results, we identified a homozygous mutation (c.493CT) in CHIP (NM_005861) in this family. Using Sanger sequencing, we also identified two compound heterozygous mutations (c.389AT/c.441GT; c.621C>G/c.707GC) in CHIP gene in two additional kindreds. These mutations co-segregated exactly with the disease in these families and were not observed in 500 control subjects with matched ancestry. CHIP colocalized with NR2A, a subunit of the N-methyl-D-aspartate receptor, in the cerebellum, pons, medulla oblongata, hippocampus and cerebral cortex. Wild-type, but not disease-associated mutant CHIPs promoted the degradation of NR2A, which may underlie the pathogenesis of ataxia. In conclusion, using a combination of whole-exome sequencing and linkage analysis, we identified CHIP, encoding a U-box containing ubiquitin E3 ligase, as a novel causative gene for autosomal recessive cerebellar ataxia

    An atlas of DNA methylomes in porcine adipose and muscle tissues

    Get PDF
    It is evident that epigenetic factors, especially DNA methylation, have essential roles in obesity development. Here, using pig as a model, we investigate the systematic association between DNA methylation and obesity. We sample eight variant adipose and two distinct skeletal muscle tissues from three pig breeds living within comparable environments but displaying distinct fat level. We generate 1,381 Gb of sequence data from 180 methylated DNA immunoprecipitation libraries, and provide a genome-wide DNA methylation map as well as a gene expression map for adipose and muscle studies. The analysis shows global similarity and difference among breeds, sexes and anatomic locations, and identifies the differentially methylated regions. The differentially methylated regions in promoters are highly associated with obesity development via expression repression of both known obesity-related genes and novel genes. This comprehensive map provides a solid basis for exploring epigenetic mechanisms of adipose deposition and muscle growth
    corecore