418 research outputs found

    Several Treatments on Nonconforming Element Failed in the Strict Patch Test

    Get PDF
    For nonconforming finite elements, it has been proved that the models whose convergence is controlled only by the weak form of patch tests will exhibit much better performance in complicated stress states than those which can pass the strict patch tests. However, just because the former cannot provide the exact solutions for the patch tests of constant stress states with a very coarse mesh (strict patch test), their usability is doubted by many researchers. In this paper, the non-conforming plane 4-node membrane element AGQ6-I, which was formulated by the quadrilateral area coordinate method and cannot pass the strict patch tests, was modified by three different techniques, including the special numerical integration scheme, the constant stress multiplier method, and the orthogonal condition of energy. Three resulting new elements, denoted by AGQ6M-I, AGQ6M-II, and AGQ6M, can pass the strict patch test. And among them, element AGQ6M is the best one. The original model AGQ6-I and the new model AGQ6M can be treated as the replacements of the well-known models Q6 and QM6, respectively

    Laplacian Projection Based Global Physical Prior Smoke Reconstruction

    Get PDF
    We present a novel framework for reconstructing fluid dynamics in real-life scenarios. Our approach leverages sparse view images and incorporates physical priors across long series of frames, resulting in reconstructed fluids with enhanced physical consistency. Unlike previous methods, we utilize a differentiable fluid simulator (DFS) and a differentiable renderer (DR) to exploit global physical priors, reducing reconstruction errors without the need for manual regularization coefficients. We introduce divergence-free Laplacian eigenfunctions (div-free LE) as velocity bases, improving computational efficiency and memory usage. By employing gradient-related strategies, we achieve better convergence and superior results. Extensive experiments demonstrate the effectiveness of our method, showcasing improved reconstruction quality and computational efficiency compared to existing approaches. We validate our approach using both synthetic and real data, highlighting its practical potential

    1-Bromo-3,5-diphenyl­benzene

    Get PDF
    The title compound, C18H13Br, crystallizes with two crystallographically independent mol­ecules in the asymmetric unit. The C—Br bond lengths and the C—C bond lengths between the benzene rings are slightly different in the two mol­ecules. The dihedral angles between adjacent benzene rings are 26.85 (2) and 39.99 (2)° in one mol­ecule, and 29.90 (2) and 38.01 (2)° in the other. There are three types of inter­molecular C—H⋯π inter­actions in the crystal structure

    Cucurbit[6]uril-based carbon dots for recognizing l-tryptophan and capecitabine

    Get PDF
    Fluorescent nitrogen and fluorine doped carbon dots (CDs) were prepared by a hydrothermal method using levofloxacin (LVFX) and cucurbit[6]uril (Q[6]) as the nitrogen and carbon sources, respectively. Decomposition of LVFX occurred at elevated temperature affording N,N′-desethylene levofloxacin hydrochloride (N,N′-DLH). The crystal structure of the resulting inclusion complex N,N′-DLH@Q[6]·[CdCl4]2(H3O)·9H2O was determined, where N,N′-DLH is protonated on each of the terminal nitrogens and the quinone functionality is a quinol which forms an intramolecular hydrogen bond to the carboxylic acid. The synthesized N,N′-DLH containing Q[6]-CDs emitted intense blue fluorescence with high photostability and exhibited stability at high ionic strength. In particular, the original rigid macrocyclic skeletons of these hosts were retained during the fabrication process, which helps in uniquely distinguishing them from other reported CDs. Meanwhile, the performance of the Q[6]-CDs was characterized using fluorescence and NMR spectroscopies. Subsequently, using the obtained Q[6]-CDs, an efficient sensing method for l-tryptophan (l-Trp) and capecitabine (CAP) has been developed based on macrocyclic host-guest chemistry. Under applicable conditions, the detection limits for l-Trp and CAP were calculated to be 5.13 × 10−8 M and 1.48 × 10−8 M, respectively

    N-(2,5-Dimethoxy­phen­yl)-4-nitro­benzene­sulfonamide

    Get PDF
    The title compound, C14H14N2O6S, is an inter­mediate for the synthesis of β-3-adrenergic receptor agonists. The two meth­oxy groups are approximately coplanar with the attached benzene ring [C—O—C—C = −2.7 (4) and 9.4 (4)°]. The dihedral angle between the two aromatic rings is 67.16 (12)°. An intra­molecular N—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked into chains along the c axis by C—H⋯O hydrogen bonds

    Ube2L6 promotes M1 macrophage polarization in HFD-fed obese mice via ISGylation of STAT1 to trigger STAT1 activation

    Get PDF
    Introduction: In obesity-related type 2 diabetes mellitus (T2DM), M1 macrophages aggravate chronic inflammation and insulin resistance. ISG15-conjugation enzyme E2L6 (Ube2L6) has been demonstrated as a promoter of obesity and insulin resistance. This study investigated the function and mechanism of Ube2L6 in M1 macrophage polarization in obesity. Methods: Obesity was induced in Ube2L6AKO mice and age-matched Ube2L6flox/flox control mice by high-fat diet (HFD). Stromal vascular cells (SVCs) were isolated from epididymal white adipose tissue of mice. Polarization induction was performed in mouse bone marrow-derived macrophages (BMDMs) by exposure to IFN-γ, lipopolysaccharide (LPS), or IL-4. F4/80 expression was assessed by immunohistochemistry staining. Expression of M1/M2 macrophage markers and target molecules was determined by flow cytometry, RT-qPCR, and Western blotting, respectively. Protein interaction was validated by co-immunoprecipitation (Co-IP) assay. The release of TNF-α and IL-10 was detected by ELISA. Results: The polarization of pro-inflammatory M1 macrophages together with an increase in macrophage infiltration were observed in HFD-fed mice, which could be restrained by Ube2L6 knockdown. Additionally, Ube2L6 deficiency triggered the repolarization of BMDMs from M1 to M2 phenotypes. Mechanistically, Ube2L6 promoted the expression and activation of signal transducer and activator of transcription 1 (STAT1) through interferon-stimulated gene 15 (ISG15)-mediated ISGlylation, resulting in M1 macrophage polarization. Conclusion: Ube2L6 exerts as an activator of STAT1 via post-translational modification of STAT1 by ISG15, thereby triggering M1 macrophage polarization in HFD-fed obese mice. Overall, targeting Ube2L6 may represent an effective therapeutic strategy for ameliorating obesity-related T2DM
    corecore