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Laplacian Projection Based Global Physical Prior
Smoke Reconstruction

Shibang Xiao, Chao Tong, Qifan Zhang, Yunchi Cen, Frederick W. B. Li and Xiaohui Liang

Abstract—We present a novel framework for reconstructing
fluid dynamics in real-life scenarios. Our approach leverages
sparse view images and incorporates physical priors across
long series of frames, resulting in reconstructed fluids with
enhanced physical consistency. Unlike previous methods, we utilize
a differentiable fluid simulator (DFS) and a differentiable renderer
(DR) to exploit global physical priors, reducing reconstruction
errors without the need for manual regularization coefficients. We
introduce divergence-free Laplacian eigenfunctions (div-free LE)
as velocity bases, improving computational efficiency and memory
usage. By employing gradient-related strategies, we achieve
better convergence and superior results. Extensive experiments
demonstrate the effectiveness of our method, showcasing improved
reconstruction quality and computational efficiency compared
to existing approaches. We validate our approach using both
synthetic and real data, highlighting its practical potential.

I. INTRODUCTION

FLuids play a crucial role in various graphics applications,
such as virtual fire drills, where realistic fluid behavior

significantly enhances the simulation experience. However,
capturing and reproducing the complex motions of natural
fluids through numerical simulation is challenging. As an
alternative approach, fluid capturing aims to reconstruct fluid
properties, including advection density and velocity, directly
from real-world observations. This reconstruction problem
has attracted significant attention in the fields of computer
graphics and computer vision due to its practical implications.
By reconstructing fluid flows from real-world data, various
applications can be facilitated, including guiding [11], [36],
control [10], stylization [22], and VR/AR applications.

Fluid flow reconstruction from multi-view videos has been
extensively studied [6], [9], [12], [14], [19], [33], [42], [45].
However, the reconstruction process faces challenges due to
the complexity of the setup and calibration, resulting in a
limited number of available views. As a consequence, the fluid
reconstruction problem becomes under-determined, making it
difficult to obtain natural and realistic flow results. Previous
approaches [6], [9], [12], [24], [45], [48] have attempted to
improve reconstruction by incorporating physical priors, such as
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Fig. 1. a) Reconstruction of smoke beyond the charred pot in the real
world captured in a video. Our algorithm reconstructs the density field and
velocity field, and re-renders it in a virtual environment. b) Visualization of
the reconstructed smoke, showing the density, velocity, and vorticity fields. c)
Multiple views of the reconstructed smoke from different perspectives.

Navier-Stokes equations and density advection. However, these
methods have primarily relied on temporally local physical
priors or simplified global physical priors, which may result in
the loss of global information and pose challenges in achieving
the global optimum during the optimization process. In this
work, we propose a novel fully differentiable framework for
fluid reconstruction that maximizes the utilization of physical
priors. Our framework integrates a differentiable renderer,
which establishes the connection between images and 3D fluid
fields, and a differentiable fluid simulator, which encompasses
the entire sequence of fluid fields. By leveraging the adjoint
method, we efficiently compute all necessary derivatives in
a single backward pass, enabling seamless integration with
gradient-based optimization algorithms.

Differentiable physics methods have gained significant
attention in inversion and control problems, enabling efficient
computation of gradients on physical simulation sequences
that can be optimized using gradient-based methods [15], [26].
However, incorporating differentiable physics into simulations
is typically more complex than forward simulation. Some
methods [3], [27] utilize automatic differentiation frameworks,
which offer generality but come with high computational costs
and memory overhead. In certain cases, the adjoint method
is employed to design high-level automatic differentiation to
improve efficiency. However, adjoint-based differentiable fluid
simulation encounters two challenges: (1) accuracy of velocity
derivatives relies on the precision of the linear solver in the
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pressure projection step, and (2) storing fluid fields for the entire
sequence to compute backward derivatives demands substantial
memory resources. To address these challenges, we propose
using divergence-free Laplacian eigenfunctions (div-free LE)
as bases for a three-dimensional vector space, maintaining
divergence-free behavior while respecting boundary conditions.
We replace the low tolerance pressure projection with direct
projection of the velocity field onto div-free LE, ensuring
continuous divergence-free behavior with enhanced efficiency.
We also leverage the dimensionality reduction capabilities of
div-free LE and implement checkpoint techniques to achieve
significant memory savings during the simulation process.

While the adjoint method ensures mathematically correct
derivatives, its direct utilization may not always yield sat-
isfactory results. To enhance reconstruction outcomes, we
propose three gradient-related strategies within the differ-
entiable framework. Our novel gradient-related visual hull
application strategy eliminates the need for extra regularization
terms. Additionally, a spectral domain multi-scale strategy
optimizes large-scale structures (lower frequency components)
first, leveraging their importance in overall reconstruction. We
further employ a temporal gradient exponential decay strategy
to prevent excessive gradient accumulation and stabilize the
optimization process. Previously, we introduced a small portion
of this work as an extended abstract [47], demonstrating the
proposed system concept through exemplary experiments. Now,
we present several novel methods, significantly enhancing the
efficiency and accuracy of fluid simulation and rendering.

Introducing Laplacian eigenfunctions into differentiable fluid
simulation, we have two primary objectives. First, we aim to
address the trade-off between derivative precision and runtime
in the divergence-free projection phase of the velocity field.
Second, we seek to tackle the issue of excessive memory
consumption during the simulation process. This is crucial for
us, as the realization of global physical priors relies on the
performance of the underlying differentiable fluid simulator.
Utilizing manually pre-derived derivative functions, rather
than automatic differentiation, enables faster computations
compared to previous approaches. Addressing limitations in
applying Neumann boundary conditions to divergence-free
Laplacian eigenfunctions (div-free LE), we introduce a new
boundary processing method. For fluid reconstruction with
solid objects, we leverage a solid mask within the basis
spectral method. Lastly, compensation correction techniques
ensure single-scatter rendering nearly matches multi-scatter
accuracy, resulting in highly realistic reconstructed fluid
visualizations. These methods collectively represent substantial
advancements in fluid simulation and rendering. Source code
will be available at https://github.com/LAST-iMP/LPBGPP-
Smoke-Reconstruction. Our main contributions are:

• We propose a differentiable framework that integrates a
differentiable fluid simulator and a differentiable renderer,
enabling efficient computation of gradients and optimiza-
tion of fluid properties for improved fluid reconstruction.

• We introduce a set of divergence-free velocity bases using
divergence-free Laplacian eigenfunctions, enhancing the
efficiency of differentiable fluid simulation and reducing
memory usage.

• We present three gradient-related strategies, namely the
visual hull application strategy, spectral domain multi-scale
strategy, and temporal gradient exponential decay strategy,
which effectively improve the quality of reconstruction
results.

II. RELATED WORK

We now present an overview of existing research in fluid
reconstruction, differentiable fluid simulation, and differentiable
rendering, which are directly relevant to our proposed frame-
work for fluid reconstruction. By exploring the advancements
in these areas, we can identify the gaps in the literature and
highlight the unique contributions of our approach.

A. Fluid Reconstruction

Methods have been proposed to reconstruct fluid motions and
passive advected quantities based on real-world observations.
While some techniques focus on reconstructing invisible
fluid motions that require specialized hardware or setups
for visualization, such as particle imaging velocimetry (PIV)
methods [44] for water flows or background-oriented schlieren
imaging (BOS) methods [2] and light path methods [20]
for hot gas flows, our focus is alternatively on capturing
visible and visually appealing fluid phenomena like smoke and
flame, which can be directly captured by cameras. However,
the limited number of available views in fluid capturing
poses significant challenges, leading to under-determined
optimization problems. This sparsity is a consequence of
practical limitations, including restricted camera setups, limited
access to fluid environments, and computational constraints,
making it challenging to deploy a large number of cameras,
especially in hazardous or inaccessible locations, thereby
adding complexity to data processing. To address the challenges
associated with sparse views, specialized techniques and priors
are employed to achieve accurate fluid reconstructions and
mitigate the under-determined nature of the problem. One
common approach involves considering the smoothness of the
reconstructed density as a prior, with methods such as limiting
the number of optimization iterations for a smoother solution
[19] or directly incorporating a smooth regularization term
into the optimization process [14]. In our work, we employ a
spectral domain multi-scale strategy as a means of achieving
smoothness regularization, thereby enhancing the quality of
fluid reconstructions.

Various priors have been explored in the field of fluid
reconstruction. One type of prior focuses on generating
novel view images by transferring appearance information
from input images [33] or estimating it through interpolation
[45]. While these priors can produce more realistic results
with fewer input views, they may introduce conflicts and
mismatches between the constraints imposed on the novel
views and the input views. Another category of priors involves
enforcing temporal constraints among frames. Some methods
couple linearized density advection with the divergence-free
condition to derive convex optimization problems for single-
view fluid reconstruction [8], and further improve efficiency
and inflow estimation in multi-view scenarios [9]. However,
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Fig. 2. Our proposed algorithm reconstructs the density ρ and velocity u of target fluid from F frames of an input sequence. Instead of solely passing
derivatives between frames, we track the gradients of both density and velocity throughout the simulation and rendering process, leveraging them to optimize
the reconstruction result.

these approaches reconstruct fluids frame by frame, relying
solely on the information from previous frames, which may
limit temporal coherence. To address this limitation, a global
transport approach has been proposed to connect density fields
of all frames and allow gradients to propagate backward
[12]. Nevertheless, the independent treatment of velocity fields
in this method prevents gradient propagation through them,
affecting temporal consistency. In our work, we introduce a
fully differentiable reconstruction framework that seamlessly
integrates temporal information, overcoming the challenges
of temporal coherence and gradient propagation. Additionally,
some studies combine deep learning with physical priors to
accelerate fluid reconstruction [35] or handle unknown lighting
conditions and static obstacles [6], leveraging the power of deep
learning to improve efficiency and robustness. By addressing
these challenges and exploring the integration of deep learning
and physical priors, significant advancements can be made in
the field of fluid reconstruction.

B. Differentiable Fluid Simulation

Differentiable fluid simulation has primarily been explored
in the context of key frame-based fluid control problems,
where the objective is to compute control force fields at each
frame to match desired fluid states specified by sparse key
frames. Previous approaches, such as the work by Treuille
et al. [41], relied on forward gradient computation, which is
computationally expensive as it requires a full simulation to
compute the derivative of each control parameter. McNamara
et al. [32] improved upon this by using the adjoint method to
compute gradients backward, enabling efficient computation
of all necessary gradients in a single pass. However, both
methods represented control forces using predefined force
patterns, sacrificing accuracy for efficiency.

To address the challenges posed by high-dimensional con-
trol forces and the lack of constraints, researchers explored
dimensionality reduction methods [7], [18], [23], [34], [43].
For instance, T. D. Witt et al. [43] defined global functions
over the entire simulation domain to represent vorticity and
velocity. Based on this, they proposed an algorithm for

simulating incompressible fluid phenomena, achieving high
computational efficiency. In recent studies, Tang et al. [39]
proposed a multi-scale approach in the spectral domain using
the Fourier transform and enforced strict divergence-free control
forces through stream functions. While their approach shares
similarities with ours, they employed stream functions as base
functions, with the vorticity of the stream function serving
as the external force field. This led to increased noise and
artifacts due to the optimization process focusing on high-
frequency components. In contrast, our method utilizes only the
divergence-free Laplacian eigenfunctions as bases, avoiding the
use of vorticity operators and providing more suitable boundary
conditions. Furthermore, our approach improves the accuracy
of gradients, enabling the handling of longer sequences and
achieving superior convergence results.

C. Differentiable Rendering

Differentiable rendering techniques have made significant
progress in addressing the non-differentiable rasterization
process in mesh-based graphics renderers. Previous approaches,
such as OpenDR [30] and subsequent works [5], [13], [21],
approximate inverse rendering in mesh-based pipelines. Recent
advancements by Liu et al. [28] and Chen et al. [5] intro-
duce truly differentiable rasterizers for improved performance.
However, existing methods lack the ability to handle global
lighting effects. To address this, Li et al. [25] propose the
first differentiable rendering framework for Monte Carlo
ray tracing, while Zhang et al. [46] introduce a differential
theory for differentiable rendering of participating media
based on radiative transfer. In our approach, we incorporate
precomputed radiance, efficient rendering techniques, and a
gradient-related visual hull strategy to support differentiable
rendering and optimize fluid reconstruction efficiently and
accurately. Specifically, we approximate the calculation of
multiple-scattered light by combining a single scattering model
with ambient light, as shown in Figure 3.
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Fig. 3. From left to right: rendering results using the single scatter model,
rendering results combining the single scatter model with ambient light, and
rendering results using Blender path tracing with multiple scattering. All
renderings are illuminated with parallel light of the same intensity.

III. GLOBAL PHYSICAL PRIOR BASED RECONSTRUCTION

A. Overview

Our focus is on reconstructing incompressible fluids, which
offers practical advantages in accurately modeling real-world
fluid behavior. Compressible fluid simulations, on the other
hand, involve computationally intensive algorithms and intro-
duce additional complexities. Therefore, in many computer
graphics and vision applications, compressible fluids are often
approximated as incompressible to simplify the computations.

When it comes to fluid reconstruction, it is crucial to
incorporate a global fluid physics prior to enforce physical
constraints and make use of image information for accurate
reconstruction. However, this task poses challenges due to the
complex nature of fluid dynamics and the need to reconcile
the physical constraints with sparse video input. We propose
an approach that integrates a differentiable fluid simulator
based on divergence-free Laplacian functions (Component
1) and a differentiable rendering module that precomputes
radiance (Component 2). This integration enables efficient
reconstruction of incompressible smoke from sparsely sampled
videos. Figure 2 depicts our proposed framework.

Component 1: Divergence-free Laplacian-based differ-
entiable fluid simulator utilizes Laplacian eigenfunctions to
derive complete and divergence-free velocity basis functions
satisfying boundary conditions. By employing projection onto
these basis functions instead of the traditional pressure projec-
tion process, we improve calculation efficiency and address the
trade-off between derivative accuracy and operational efficiency.
Additionally, the expressive power of the basis functions’
dimension reduction is leveraged to reduce the storage re-
quirements for intermediate variables, resulting in significant
memory savings. Lastly, we utilize a frequency domain multi-
scale strategy to enhance fluid control effectiveness.

Component 2: Pre-computed radiance differentiable
rendering. We simplify the computation of differentiable
rendering by employing a single-shot scattering model. In our
method, we combine this model with a novel gradient-related
visual hull, which allows us to optimize the rendering differ-
entiation process. By integrating the improved differentiable
fluid simulator with the differentiable renderer, we construct
a fully differentiable framework for smoke reconstruction. To

TABLE I
DEFINITIONS OF NOTATIONS

Notation Definition
u Velocity
p Pressure
f Force
ρ Density

ρinf Density inflow
A Advection operator
P Divergence-free projection operator
qt Fluid states, [ρt,ut]T

st Optimizable quantities, [ρtinf , f
t]T

k Wave number
λk Laplacian eigenvalue

Ψ(k) Divergence-free laplacian eigenfunction
Φx(k) x-component of divergence-free

laplacian eigenfunction
N Size of velocity field, [Nx, Ny , Nz , 3]

ûx(k) Spectral coefficient of x-component of velocity
w Velocity basis coefficient
R Rendering operator
P Set of point lights
F Fluid simulation operator, (P ◦ A)
φ Objective function
Θ Set of input views

qt
adj Adjoint state of qt

H Visual hull

prevent derivative explosion, we introduce a temporal gradient
exponential decay strategy.

In Section III-B, we explain our fluid simulation approach,
which utilizes divergence-free Laplacian eigenfunctions. We
show how this enhances our differentiable fluid simulation.
Moving to Section III-C, we introduce precomputed radiance
for differentiable rendering. We elaborate the framework
outlined in Section III-D, offering more insights into how
we optimize fluid reconstruction.

To facilitate understanding, we provide a comprehensive list
of relevant notations in Table I.

B. Laplacian Eigenfunctions Based Differentiable Fluid Simu-
lation

In this section, we discuss the forward and backward differ-
entiation process of a differentiable fluid simulator based on the
Euler method commonly used in computer graphics. The fluid
velocity field is governed by the incompressible Navier-Stokes
(NS) equations and the incompressibility condition. However,
solving a large linear system of equations iteratively during
the backward differentiation process can result in low solution
accuracy and significant derivative errors. These issues hinder
convergence and introduce unrealistic fluid behavior. To address
these challenges, we propose a novel approach that employs
the spectral method to solve the partial differential equations in
the pressure projection step. By utilizing the spectral method,
we avoid the iterative solving of linear equations, ensuring high
projection accuracy while maintaining computational efficiency.
This eliminates the need for time-consuming equation solving
and reduces computational overhead. The spectral method
allows us to achieve projection accuracy similar to high-
precision methods while maintaining computational efficiency
comparable to low-precision approaches.
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1) Differentiable Fluid Simulation: Our method is based
on the incompressible Navier-Stokes equations, which provide
a strong physical foundation for simulating the behavior of
incompressible fluids. These equations describe the motion of
fluids with constant density, such as liquids and low-velocity
smoke. The incompressible Navier-Stokes (NS) equations can
be expressed as follows:

∂u

∂t
+ u · ∇u = −∇p+ f

∇ · u = 0,
(1)

where u represents the fluid velocity, p denotes the pressure,
and f encompasses various forces acting on the fluid, such as
viscous forces and external body forces.

Additionally, the evolution of density, which is passively
advected by the velocity field, can be described by an advection-
type equation:

∂ρ

∂t
+ u · ∇ρ = ρs, (2)

where ρ represents the density and ρs includes source terms,
such as inflow and outflow.

To simulate the fluid behavior, we solve Equation 1 and
Equation 2 at each frame t using an operator splitting approach.
The simulation process can be described as follows:

ut+1 = P(A(ut,ut)) + P(f t+1),

ρt+1 = A(ρt,ut+1) + ρt+1
inf .

(3)

where A(u,u) and A(ρ,u) are differentiable advection op-
erators that advect the velocity u and density ρ using the
velocity field u individually. In our work, we discretize these
operators using a modified MacCormack scheme [37]. P is
a linear projection operator that ensures the velocity field
remains divergence-free. ρinf represents the inflow part of
the source term ρs in Equation 2. It is worth noting that the
form of Equation 3 is different from that presented in [4]. We
extract f t+1 and ρt+1

inf to separate the fluid states qt = [ρt,ut]T

and the optimizable quantities st = [ρtinf , f
t]T . Splitting the

fluid state and optimizing st allows for independent control
and manipulation of the inflow sources and external forces,
facilitating targeted adjustments and optimizations of the fluid
simulation.

The necessary gradients for optimization are computed as:

∂qt+1

∂qt

T

=

[
∂ρt+1

∂ρt
∂ρt+1

∂ut

∂ut+1

∂ρt
∂ut+1

∂ut

]T

=

[
∂A(ρt,ut+1)

∂ρt

∂A(ρt,ut+1)
∂ut+1 PT dA(ut,ut)

dut

0 PT dA(ut,ut)
dut

]T
(4)

∂qt

∂st
=

 ∂ρt

∂ρt
inf

∂ρt

∂f t

∂ut

∂ρt
inf

∂ut

∂f t

 =

[
I ∂A(ρt−1,ut)

∂ut

0 I

]
. (5)

where Equation 4 represents the derivative of the density and
velocity fields between two frames, and Equation 5 represents
the derivative of the inflow and force fields. These equations
provide a block matrix representation of the gradients and
derivatives, allowing for efficient computation and storage,

Fig. 4. Differentiable simulation process with global physical priors. We
optimize the forces for each frame, as well as the density of the initial state
and inflow. The velocity and intermediate density fields are indirectly modified
as the simulation progresses.

and enabling the application of optimization techniques such
as gradient-based methods, which leverage the derivatives to
adjust and optimize the fluid simulation parameters, facilitating
accurate and efficient simulations.

The optimization process depicted in Figure 4 involves using
the derivatives described by equations 4 and 5. These derivatives
capture the changes in density, velocity field, inflow, and force
between frames. The process starts with the evolution of the
fluid state from frame 0 to the last frame following the forward
simulation. The derivative is then computed based on the
objective function. By propagating the derivative backward
from the last frame to frame 0, the impact of the control
force field basis function coefficients on each frame’s evolution
is determined, and the external force field basis function
coefficients are updated accordingly. In subsequent iterations,
the updated coefficients of the control force field modify the
fluid state’s evolution by adjusting the control force field. This
iterative process continues until the updated basis function
coefficients align with the fluid state of the desired key frame.
Automatic differentiation is utilized to calculate gradients
related to the advection operator A. Details about the project
operator P and the representation of divergence-free fields can
be found in Section III-B2

2) Laplacian Eigenfunctions-based Projection: Our con-
tribution here is the utilization and application of Laplacian
Eigenfunctions for the pressure projection step in Laplacian
Eigenfunctions Based Differentiable Fluid Simulation. By in-
corporating this approach, we eliminate the need for iteratively
solving linear equations, leading to improved efficiency and
accuracy in the differentiable fluid simulation process.

Laplacian eigenfunctions are complete orthogonal basis func-
tions designed specifically for a given domain with appropriate
boundary conditions. They are derived from the eigenfunctions
of the vector Laplacian operator ∆. One key advantage
of Laplacian eigenfunctions is their ability to automatically
eliminate all divergence terms by decomposing the field into
linear combinations of these basis functions. Consequently,
the computationally expensive pressure projection step is not
required. In our 3D orthonormal Cartesian coordinate system,
the vector Laplacian is equivalent to applying the scalar
Laplacian to each vector component. To ensure divergence-free
Laplacian eigenfunctions, we impose the additional condition
that each basis field must also be divergence-free. Therefore,
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Fig. 5. The reconstruction results of smoke drifting around a cube, a sphere,
a plane and a Cone.

the basis fields Ψ can be characterized by:

∆Ψ(k) = λkΨ(k)

∇ ·Ψ(k) = 0,
(6)

where k = (kx, ky, kz) ∈ Z3 is the vector wave number, λk

and Ψ(k) are the eigenvalue and eigenfunction, respectively,
corresponding to wave number k. Here, ∇· represents the
divergence operator. It is important to note that each basis field
Ψ(k) is a 3D vector, i.e., Ψ(k) = [Φx(k),Φy(k),Φz(k)]

T ,
where Φx(k), Φy(k), and Φz(k) represent the x, y, and z
velocity components, respectively.

In our work, we reconstruct fluids within a rectangular
domain using no-slip Neumann boundary conditions. Although
free-slip Neumann boundary conditions may align more closely
with the behavior of real captured fluid, it is not possible to
derive divergence-free Laplacian eigenfunctions under these
boundary conditions. Our experiments show that the chosen
boundary condition performs well. Under our domain and
boundary condition, the basis fields have an analytic form:

Ψ(k) =

Φx(k)
Φy(k)
Φz(k)

 =

a cos (kxx) sin (kyy) sin (kzz)b sin (kxx) cos (kyy) sin (kzz)
c sin (kxx) sin (kyy) cos (kzz)

 , (7)

where x, y, and z are defined within the domain Ω ∈ [0, π]3.
The values of a, b, and c can be arbitrary, but they must satisfy
the divergence-free condition akx/Nx+bky/Ny+ckz/Nz = 0.
Here, N = [Nx, Ny, Nz, 3] represents the grid size of a velocity
field.

This analytic form is also derived in [7]. However, they
only choose one feasible solution for the divergence-free
condition, resulting in an incomplete basis. We discovered that
when kx, ky, and kz are fixed, the divergence-free condition
implies that all possible values of the vector [a, b, c]T lie in
a plane perpendicular to the normal [kx/Nx, ky/Ny, kz/Nz]

T .
Therefore, any two linearly independent vectors can be used
as bases to represent this plane. It is preferable for the vectors
to be orthogonal and normalized to facilitate projection. In our
work, we choose the following two vectors as bases under k:

kxky

NxNy

−(
k2
x

N2
x
+

k2
z

N2
z
)

kykz

NyNz

 ,

 kz

Nx

0

− kx

Nz

 , (8)

which need to be normalized later. The chosen basis vectors
in our differentiable fluid simulation capture the interactions
between the wave vector components (kx, ky, kz) and grid
sizes (Nx, Ny, Nz) in a simplified and efficient manner.
The components of these vectors represent the relationships
between the various directions and grid sizes, allowing for
straightforward calculations and projections. By using these
specific basis vectors, we streamline the representation and
computation process in our fluid simulation approach.

Moreover, the basis field with a larger vector wave number
k corresponds to a smaller spatial scale of vorticity. We set the
maximum value of the vector wave number k to be the same as
the size of our Eulerian grids, ensuring that the smallest spatial
scale of vorticity is equal to the size of a voxel. Consequently,
our basis fields can effectively represent any divergence-free
velocity fields up to this scale. It’s important to note that one
k corresponds to two basic fields. Assuming the number of
voxels in the Eulerian grids is Nx × Ny × Nz , there exist
2×Nx ×Ny ×Nz basis fields, requiring only 2×Nx ×Ny ×
Nz basis coefficients to represent a divergence-free velocity
field, as depicted in Equation 9, where wi represents the basis
coefficients. In comparison to the grid-based representation
with 3×Nx ×Ny ×Nz coefficients, our method allows for a
one-third reduction in memory usage.

u =

2×Nx×Ny×Nz∑
i=0

wiΨi (9)

It is worth noting that the analytic form of our basis fields
consists of sine and cosine functions, enabling accelerated
projection and recovery using a combination of discrete sine
transform (DST), discrete cosine transform (DCT), and their
inverses. For example, projecting the x component of a velocity
field ux yields:

⟨ux,Φx(k)⟩ =
∑
x

∑
y

∑
z

uxa cos (kxx) sin (kyy) sin (kzz)

= aûx(k),
(10)

where ûx(k) can be computed by performing a DCT in the x
direction, followed by a DST in the y direction, and then in
the z direction. To recover ux from ûx(k), perform an inverse
DST (IDST) in the z direction, followed by an inverse DCT
(IDCT) in the y direction, and finally in the x direction. This
projection step, followed by the recovery step, represents the
projection operator P in Equation 3.

Our method shares similarities with Fourier spectral methods
[29], [38] in that we both use sine and cosine functions to
enforce incompressibility in the spectral domain. However,
these methods do not address the Neumann boundary condition
that we require. Furthermore, Fourier spectral methods enforce
divergence-free conditions in the spectral domain by subtracting
components with divergence, while we derive two basis vectors
and project onto them. In our method, we approximate open
boundary conditions using boundary conditions that allow flow
from all faces. The velocity components in each direction
satisfy Neumann boundary conditions on the boundary surface
perpendicular to them, while the remaining components satisfy
Dirichlet boundary conditions.
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3) Reconstruction Coupling with Solids: To enable our
method to support the interaction of solids in the reconstruction
of fluids, we propose the spectral reconstruction method based
on solid masks. During the reconstruction process, we introduce
a regularization term to both the density field and the external
force field. This regularization term enforces the density field in
the region occupied by solids to be zero. Additionally, there is
an outward-directed external force applied from the solid region,
which pushes out any fluid density that may enter the interior
of the solids. By reconstructing the density field and external
force field simultaneously, we achieve accurate reconstruction
of both fluids and solids. The spectral reconstruction method
based on solid masks can handle arbitrary geometric shapes of
solids and can seamlessly integrate with our fluid reconstruction
method, allowing for precise and efficient reconstruction of
fluids and solids.

Figure 5 showcases the reconstruction results of smoke inter-
acting with a cube using our proposed method, which allows for
the inclusion of solids in the fluid reconstruction process. The
solid rendering is intentionally hidden to provide a clearer visu-
alization of the fluid reconstruction. The reconstructed smoke
flows convincingly around the solid cube, demonstrating the
effective support of our method for interactive reconstruction
involving solids. This capability is particularly valuable for
applications such as fluid-structure interaction, where accurate
simulation of the interaction between fluids and solids is crucial.

4) Spectral Domain Multi-scale Strategy: Efficiently recon-
structing large-scale fluid motions while minimizing compu-
tational costs is essential for fluid rendering in interactive
applications such as VR/AR. In conventional fluid recon-
struction methods, spatial domain multi-scale strategies have
been commonly used to adjust the resolution of density and
velocity fields. However, in the realm of differentiable fluid
simulation, the highly nonlinear nature of fluid dynamics can
lead to substantial changes in fluid motions when altering
spatial resolution. This can adversely affect convergence speed
and overall simulation quality. To address this challenge, we
introduce a spectral domain multi-scale strategy, specifically
tailored for the force field, drawing inspiration from the work of
[39]. While [39] employs a 3D Fourier transformation to shift
the velocity field into the spectral domain, our approach adapts
this strategy for the force field. We perform up-sampling and
down-sampling on the control force field while maintaining the
spatial resolution of the velocity and density fields unchanged.
Consequently, although minor-scale movements may occur in
the early optimization stages, the control force field converges
starting from large scales, thereby mitigating the influence of
small-scale motion derivatives.

In our approach, the force field is expressed as coefficients
of basis functions derived from divergence-free Laplacian
eigenfunctions. These basis functions exhibit different spatial
frequencies represented by distinct wave vectors k, where each
k corresponds to vortices of varying sizes on the divergence-free
basis functions. Essentially, larger wave vectors k indicate basis
functions with higher spatial frequency velocities. To implement
a frequency domain multi-scale strategy during the optimization
process, we only need to set the coefficients of basis functions
to zero at larger wave vectors k. This approach proves simpler

and more direct than a spatial multi-scale strategy, eliminating
the requirement for managing fields of different spatial scales
and avoiding the time-consuming and error-prone up-sampling
and down-sampling processes.

Specifically, we define the truncated wave vector as kscale =
αscalekmax, where kmax = [Nx, Ny, Nz]

T represents the
maximum values of the wave vector. The truncation retention
ratio αscale is initially set to 0.01. During the optimization of
basis function coefficients, only coefficients with wave vectors
k ≤ kscale are considered. Upon convergence, αscale is updated
to 2αscale, expanding the range of optimizable wave vectors.
This optimization process continues until αscale ≥ 1, at which
point coefficients of basis functions corresponding to all wave
vectors become involved in the optimization.

Furthermore, our study identifies a challenge in the conven-
tional application of a multi-scale strategy. Direct truncation at
the top accumulates coefficients of basis functions continuously,
leading to some coefficients remaining zero as optimization
progresses. This results in high-frequency signals along the trun-
cation plane, causing ringing artifacts when transforming the
frequency-domain control force field to the spatial domain. To
address this issue, we propose replacing direct truncation with
Gaussian truncation. This entails multiplying the frequency-
domain field by a three-dimensional Gaussian function with
mean zero and deviation kscale, maintaining the integrity of the
frequency-domain information. All other procedures remain
unchanged.

Our multi-scale strategy involves decomposing the force
field into different frequency bands using Fourier analysis. By
selectively reducing the representation of frequency components
based on their significance, we achieve expedited computations
while preserving essential fluid behaviors across various
scales. This technique enhances the efficiency and accuracy of
differentiable fluid simulation by capturing both high-frequency
details and low-frequency global behaviors. Consequently, our
method optimizes the overall performance and fidelity of the
differentiable fluid simulation process.

C. Precomputed Radiance Differentiable Rendering

The aim of our approach is to establish a connection between
image observations and fluid physical priors, allowing for
the propagation of gradients in a differentiable manner. To
achieve this, we employ a differentiable renderer that enables
the propagation of derivatives from images to fluid quantities.

Rendering a density ρ in a given direction ω from near plane
n to far plane f can be formulated as the integral:

R(ρ, ω) =

∫ f

n

L(x, ω)τ(n, x)dx, (11)

where L(x, ω) represents the outgoing radiance from position
x in the direction ω. The term τ(n, x) calculates the radiance
attenuation along the ray from the current position x to the
near plane, controlled by the extinction coefficient σt(a):

τ(n, x) = e−
∫ x
n

σt(a)da (12)

However, calculating the outgoing radiance recursively for
multiple scattering processes can be time-consuming. To
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expedite the rendering process, we approximate multiple
scattering using single scattering with ambient light. Thus,
the outgoing radiance can be expressed as:

L(x, ω) =
1

4π
σs(x)(Ia +

∑
p∈P

Ipτ(x, p)), (13)

where σs(x) represents the scattering probability, 1
4π is the

probability of scattering in the direction ω over a unit sphere,
Ia is the ambient light intensity, and Ip denotes the intensity
of point lights. The ambient light and all point lights in P
contribute to the reduced incident radiance at position x. The
coefficients σt(x) and σs(x) are both proportional to the density
value ρ(x), with proportionality constants of 1.0 and 0.8,
respectively.

To handle the integrals in Equation 11, we utilize raymarch-
ing. Each sample point in Equation 11 requires a second ray
marching step in Equation 13, resulting in quadratic time
complexity with respect to the number of sample points. To
mitigate this, we precompute the outgoing radiance at each
voxel center in the given density field using Equation 13, and
then perform Equation 11 by employing tri-linear interpolation
at each sample point.

The process of derivative backpropagation for our differen-
tiable rendering is derived and implemented manually. This
eliminates the need to trace derivatives for each variable,
resulting in reduced memory usage and accelerated computation
speed. To ensure stable derivatives, we exclude derivative
calculations in the precomputed outgoing radiance.

In summary, in differential fluid reconstruction, time is saved
by precomputing the outgoing radiance at voxel centers, as
shown in Equation 13. This eliminates the need for recursive
calculations during rendering and reduces the overall time
complexity. Additionally, the use of raymarching and tri-linear
interpolation optimizes the estimation of radiance values at
sample points, as described in Equation 11, resulting in efficient
computation. By leveraging these techniques, the rendering
process becomes faster and more efficient, facilitating the
propagation of gradients from images to fluid quantities.

D. Reconstruction Framework

We now present our reconstruction framework, which aims
to reconstruct density fields and velocity fields for all frames
that align with the input sparse-view videos while respecting
physical priors. To effectively leverage these physical priors,
we optimize quantities that govern the fluid’s behavior instead
of directly optimizing the density and velocity fields.

Our optimization problem can be formulated as follows:

min
st

φ(q) =

F−1∑
t=0

φt(qt) =

F−1∑
t=0

1

|Θ|
∑
θ∈Θ

∥R(qt, θ)− Itθ∥22

s.t. qt+1 = F(qt) + st+1, t = 0, 1, . . . , F − 2,
(14)

In this formulation, R represents the rendering process, F
represents the fluid simulation process, and F denotes the
maximum number of frames. The variable t represents the
quantity at frame t, and qt = [ρt,ut]T represents the fluid
states, including the density field ρt and the velocity field ut.

Algorithm 1: Differentiable framework for fluid recon-
struction

1 initialize all fields to zero;
2 load multi-view images of all frames;
3 for i← 0 to max iterations do

// forward pass
4 for t← 1 to F − 1 do
5 qt ← F(qt−1) + st;
6 store qt overwrites st;
7 end

// backward pass
8 for t← F − 1 to 1 do
9 st ← qt −F(qt−1);

10 calculate ∂qt+1

∂qt

T
, ∂qt

∂st
;

11 calculate dφt

dqt ;
12 if t == F − 1 then
13 qt

adj ← dφt

dqt ;
14 else
15 qt

adj ← (1− β) ∂q
t+1

∂qt

T
qt+1
adj + β dφt

dqt ;
16 end
17 ∂φ

∂st
← qt

adj
T ∂qt

∂st
;

18 update st with ∂φ
∂st

;
19 store st overwrites qt;
20 end
21 ∂φ

∂ρ0
← (1− β) ∂q

1

∂ρ0

T
q1
adj + β dφ0

dρ0
;

22 update ρ0 with ∂φ
∂ρ0

;
23 end

Similarly, st = [ρtinf, f
t]T represents the optimizable quantities,

including the inflow density field ρtinf and the force field f t.
The first density field ρ0 is also an optimizable quantity. All
these fluid fields are represented by Eulerian grids. The set
of input views is denoted by Θ, and Itθ represents the input
image at view θ and frame t.

We solve this optimization problem using a gradient-based
method, and the gradients are efficiently computed using the
adjoint method, similar to the approach in [32]. Algorithm 1
outlines our optimization process. In each iteration, we perform
a forward fluid simulation pass (lines 4-7), followed by a
backward gradient calculation pass (lines 8-22). In the backward
pass, the gradients within one frame are calculated in lines
10-11, and the final derivatives with respect to the optimizable
quantities are computed in lines 17 and 21 using the adjoint
states qadj. The adjoint states have an iterative form:

qt
adj =

∂qt+1

∂qt

T

qt+1
adj +

dφt

dqt
, t = 0, 1, . . . , F − 2

qt
adj =

dφt

dqt
, t = F − 1,

(15)

However, as shown in lines 12-16 and 21, we incorporate
an exponential moving average (EMA) with decay β to the
adjoint states. This technique, also used in [12], attenuates
gradients from far frames exponentially. It is beneficial because
near frames often provide more valuable information, and
excessive accumulation of gradients can be avoided. It is worth
noting that the gradients at the last frame are not multiplied
by β, which serves as a bias correction to amplify gradients
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at later frames. Additionally, we utilize the checkpointing
technique as shown in lines 6, 9, and 19. Both fluid states qt

and optimizable quantities st are stored in the same location
to reduce memory usage, although it requires one additional
forward recomputation in each iteration.

To reduce the parameter space, a visual hull is commonly
used in previous fluid reconstruction methods. The visual hull
provides a conservative estimation of the regions where non-
zero density values may exist, ensuring that no density value
lies outside the visual hull. The visual hull is constructed
using the silhouettes (SIL) of the input multi-view images
and the intersection of their inverse rendering results (R−1).
Mathematically, the visual hull can be defined as:

Ht =
⋂
θ∈Θ

R−1(SIL(Itθ), θ), (16)

where Θ represents all input views.
Previous works have treated the visual hull as a hard

constraint when optimizing density fields. While this approach
eliminates density residuals outside the visual hull, it poses
a challenge in our reconstruction framework, where density
fields are considered intermediate variables that are not directly
optimized. Simply cutting off density outside the visual hull
would reduce the sum of density values, potentially leading to
sub-optimal results. One possible remedy is to introduce a soft
regularization term to the optimization problem to minimize
density values outside the visual hull. However, this approach
requires a carefully chosen regularization coefficient.

To overcome these limitations, we propose a novel gradient-
related visual hull strategy that eliminates the need for
additional regularization terms. We define a voxel v as being
outside the visual hull Ht if its projection lies outside the image
silhouette in at least one view. Let Θout denote the set of views
where the projection of v is outside the silhouette, and Θin
represent the remaining views (Θin = Θ−Θout). It is observed
that the derivatives with respect to the images from views in
Θout tend to decrease the projected image values, resulting in a
reduction of the density values at voxel v. However, derivatives
from views in Θin do not guarantee this effect, which makes
it challenging to eliminate density residuals outside the visual
hull. Equation 17 presents a straightforward solution to address
this issue.

∂φt

∂ρt(v)
=


∑
θ∈Θ

∂Itθ
∂ρt(v)

T
∂φt

∂Itθ
, v ∈ Ht

∑
θ∈Θ

min(
∂Itθ

∂ρt(v)

T
∂φt

∂Itθ
, 0). v /∈ Ht

(17)

In Equation 17, when a voxel v is located outside the visual
hull, we enforce positive derivatives with respect to v from each
view θ. By considering both Θout and Θin together, we ensure
the desired effect on derivatives from Θout while eliminating
conflicting derivatives from Θin that could hinder the reduction
of density residuals. Treating both sets together streamlines
the view partitioning process, saving computational time.

The effectiveness of our visual hull strategy is demonstrated
in Figure 6, where the target dual-view image is optimized from
the initial density fields in the upper-left and lower-left positions.

Fig. 6. Impact of different visual shell application strategies on differentiable
rendering

The resulting images after 20 iterations using different methods
with the visual hull strategy are combined on the far right.
To highlight the contrast effect, the brightness of all images
is increased while reducing the contrast proportionally. The
second column exhibits artifacts parallel to the camera ray
trace when the visual hull is not utilized. In the third column,
limitations of the hard visual hull method are evident in
handling density values outside the visual hull. On the other
hand, our proposed method, shown in the fourth column,
effectively avoids artifacts, handles density values outside
the visual hull, and does not require the introduction of new
regularization coefficients.

In summary, our reconstruction framework aims to re-
construct density fields ρ and velocity fields v for sparse-
view videos by optimizing fluid behavior governing quantities.
To achieve this, we formulate an optimization problem that
minimizes the discrepancy between rendered frames and
input images while respecting physical priors. The framework
incorporates a novel gradient-related visual hull strategy, which
effectively eliminates density residuals outside the visual hull
without the need for additional regularization terms. By solving
the optimization problem using a gradient-based method and
leveraging the adjoint method for efficient gradient computation,
we obtain the reconstructed density fields ρ and velocity
fields v. The novelty of our framework lies in optimizing
fluid behavior governing quantities and effectively leveraging
physical priors. Additionally, our gradient-related visual hull
strategy enhances the handling of density residuals outside the
visual hull, resulting in more accurate reconstructions.

IV. EXPERIMENTS

To validate the effectiveness of our proposed method, we
use a large number of mature synthetic data for quantitative
comparison, and a set of real data for residual error comparison.
Our focus was on reconstructing smoke as the target medium.
Now, we describe the experimental setups, including qualitative
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Fig. 7. Visualization of the density field (top), velocity field (middle), and vorticity field (bottom) in a slice of the reconstructed data. The color coding
represents the value of reconstructed field. Density field is scalar value, while velocity and vorticity field are vector field. The ground truth is obtained from a
virtual dataset constructed using the NS solver [40]. The first four columns and the tenth column represent the reconstruction results of our method without any
prior, with a local physical prior, with a global density prior, with a global velocity prior, and with a global physical prior, respectively. The fifth column shows
the reconstruction result with a global prior, but the Laplacian projection is replaced with traditional pressure projection. The seventh and eighth columns
display the results from ScalarFlow [9], Global Transport [12], Pinf [6], and Sheng’s work [35].

and quantitative evaluations, ablation experiments, and com-
parisons with state-of-the-art methods such as ScalarFlow (SF)
[9], Global Transport (Glob-Trans) [12], Pinf [6] and Sheng’s
work [35]. Additionally, we provide details about the hardware
and software configurations used in our experiments, including
the use of the Taichi language [17] with diffTaichi [16] for
automatic differentiation in advection.

Synthetic Data: We first conducted qualitative and quantita-
tive experiments on synthetic data to evaluate the effectiveness
of our method. Smoke was chosen as the target medium for
reconstruction. We reconstructed the smoke from five view
images, with the positions and orientations of the cameras
matching those used in ScalarFlow (SF), Global Transport
(Glob-Trans), Pinf and Sheng’s work. These cameras were
evenly spread horizontally around 120 degrees and employed
perspective projection.

Real Data: To further assess the performance of our method,
we performed experiments on real data and compared the results
with previous works. Once again, smoke was used as the
target medium for reconstruction. Similar to the synthetic data
experiments, we reconstructed the smoke from 5 view images.
The camera positions and orientations were identical to those
used in the synthetic data experiments, ensuring consistency
and fair comparisons.

Hardware and Software Configuration: All experiments
were conducted on a system equipped with an Intel(R)
Core(TM) i7-9700 CPU, an NVIDIA GeForce 2070 8GB GPU,
and 16GB of memory. Our code was implemented using the

Taichi language [17], which is a high-performance parallel
programming language embedded in Python. For automatic
differentiation in the advection process, we utilized diffTaichi
[16]. Since most of our code relied on GPU acceleration, we
used CUDA as the backend for Taichi.

A. Comparison on Synthetic Data

To evaluate our performance on synthetic data, we utilize the
MantaFlow [40] open-source fluid solver for simulating the data.
The simulation employs Eulerian simulation with MAC grids,
utilizing a PCG pressure projection solver with a tolerance of
1e-12 and MacCormack advection [37]. Additionally, stochastic
noise is introduced to the inflow region, and time-varying body
forces are manually applied to generate complex fluid flow
motion. The synthetic data has a spatial resolution of 100 ×
178 × 100 and comprises a set of rising smoke plumes with
120 frames. The density and velocity fields of each frame are
saved for comparison.

For a fair comparison, we generate multi-view images using
the respective rendering code of each compared method, and
then reconstruct the densities and velocities using the same
rendering setup. This ensures that the reconstructed data closely
resembles the synthetic data. To quantitatively evaluate the
reconstruction quality, we calculate the average root mean
square error (RMSE) and structural similarity index (SSIM) of
densities and velocities across all 120 frames. Lower RMSE
values and higher SSIM scores indicate better reconstruction
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TABLE II
QUANTITATIVE COMPARISON RESULTS OF BOTH DENSITY AND VELOCITY FIELDS. THE FIRST FOUR ROWS PRESENT THE QUANTITATIVE COMPARISON WITH
SCALARFLOW [9], GLOBAL TRANSPORT (GLOB-TRANS) [12], PINF [6] AND SHENG’S [35]. THE LAST SIX ROWS SHOW THE RESULTS OF THE ABLATION

EXPERIMENTS: NO PHYSICAL PRIOR (NP), LOCAL PHYSICAL PRIOR (LP), GLOBAL DENSITY PRIOR (GDP), GLOBAL VELOCITY PRIOR (GVP), AND
GLOBAL PHYSICAL PRIOR (GP).

Method
Metric imgSSIM imgLPIPS desRMSE desSSIM velRMSE velSSIM

ScalarFlow [9] 0.9706 0.02619 0.3147 0.9764 0.04972 0.9759
Glob-Trans [12] 0.9769 0.01528 0.5838 0.9562 0.1034 0.9547

Pinf [6] 0.9668 0.03747 0.4414 0.9695 0.0792 0.9591
Sheng’s [35] 0.9589 0.02934 0.4762 0.9523 0.0825 0.9625
mgpcg(GP) 0.9869 0.01104 0.1679 0.9907 0.03870 0.9814
Laplace(NP) 0.9794 0.01794 0.2132 0.9845 N/A N/A
Laplace(LP) 0.9812 0.01357 0.1941 0.9852 0.04983 0.9746

Laplace(GDP) 0.9855 0.01106 0.1709 0.9889 0.04782 0.9785
Laplace(GVP) 0.9867 0.00999 0.1603 0.9900 0.03645 0.9802
Laplace(GP) 0.9869 0.01101 0.1679 0.9907 0.03870 0.9814

TABLE III
QUANTITATIVE COMPARISON RESULTS OF RELATIVE ERROR. THE FIRST THREE ROWS SHOW THE RESULTS OF OUR REDUCED-ORDER PROJECTION METHOD

WITH DIFFERENT ORDER, COMPARING WITH FULL-ORDER METHOD MGPCG.

Method
Metric imgRRMSE(%) desRRMSE(%) velRRMSE(%)

Laplace(10) 9.34 10.22 9.43
Laplace(25) 6.74 6.07 5.78
Laplace(50) 5.09 5.49 4.12
Laplace(100) 4.87 5.01 3.60

mgpcg 4.87 5.04 3.67

TABLE IV
TIME USAGE COMPARISON OF PROJECTION METHODS IN THE FLUID SIMULATION PROCESS. OUR LAPLACIAN-BASED PROJECTION METHOD REQUIRES LESS

TIME THAN TRADITIONAL PRESSURE PROJECTION WHILE ENSURING DIVERGENCE-FREE VELOCITY.

Method
Performance Projection error Projection derivation error Residual divergence Time cost

Ours 1305.69 2.05e-06 continuous form no divergence 27.78ms
Pressure Projection (1e-3) 1309.91 6.35e-04 9.17e-05 34.57ms
Pressure Projection (1e-6) 1296.97 2.43e-05 3.46e-06 55.52ms
Pressure Projection (1e-9) 1297.75 3.97e-07 1.21e-07 125.72ms

TABLE V
TIME USAGE COMPARISON OF RECONSTRUCTION METHODS. OUR METHOD
IS SIGNIFICANTLY FASTER THAN OTHER METHODS THAT UTILIZE GLOBAL
PRIOR (GLOBAL TRANSPORT [12] AND PINF [6]) WHILE INCORPORATING

ADDITIONAL VELOCITY FIELD RESTRICTIONS.

Method
Performance Time cost

Ours 5h21m
Glob-Trans [12] 21h14m

Pinf [6] 23h23m

quality. Note that when evaluating the velocity index, we
exclude velocities outside the visual hull, as our main focus is
on velocities associated with densities.

1) Global Physics Prior Ablation Experiments: In our
method, global physical priors play a crucial role in improving
the quality of smoke reconstruction. To evaluate the effec-
tiveness of the global physical prior, we conduct ablation
experiments using the same 5-view smoke videos as input.
We compare the final smoke reconstruction results of three
different methods: 1) one without any physical prior, 2) one
employing local physical priors, and 3) one employing global
physical priors.

In the global density prior experiment, we imposed a

constraint during the reverse differentiation process of the
differentiable fluid simulator. Specifically, we set the derivative
of the next-frame velocity field with respect to the current-
frame velocity field to 0. This constraint effectively halts
the propagation of velocity field derivatives between frames,
creating a local physical prior within the velocity field while
preserving a global one in the density field. Conversely, in the
global velocity prior experiment, we applied a similar approach
by setting the derivative of the next-frame density field to 0.

In these ablation experiments as shown in Figure 7 and
Table II, the three methods differ in the way they handle
velocity evolution while using differentiable density advection
to connect all densities. The method without any physical prior
considers velocities independently, and no velocity advection
is performed. This means that derivatives can only affect the
velocity of the current frame. Alternatively, the method using
local physical priors evolves velocities using fluid simulation,
but derivatives are not backward propagated through velocities.
Finally, the method employing global physical priors, which
is our proposed method, incorporates global physical priors
into the velocity evolution process, enabling the propagation
of derivatives through all frames.

Figure 7 shows the density and velocity slices at the last
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Fig. 8. Reconstruction result on real dataset. The color coding represents the
difference between the ground truth and the reconstruction results of each
method. In comparison to our method, the reconstruction results obtained
using Glob-Trans [12] exhibit significant noise, resulting in an unrealistic
density distribution. On the other hand, the reconstruction results produced by
ScalarFlow [9] and Pinf [6] appear relatively vague, lacking fine details.

Fig. 9. Qualitative comparison results of the multi-scale strategy. As the
truncation threshold increases, the details in the velocity field become more
pronounced. Additionally, the use of the Gaussian truncation method ensures
the absence of significant ringing artifacts.

frame of the smoke videos reconstructed using the three
different methods. It is evident that the smoke reconstruction
results using the global physical prior method exhibit the
highest level of accuracy. The method employing local physical
priors shows fluctuations in the density field at the boundaries
of the smoke due to the derivative propagation being limited
to a single frame. However, the method without any physical
priors exhibits even more pronounced density fluctuations, and
the resulting velocity field appears chaotic.

Quantitative evaluation results are presented in Table II,
confirming the effectiveness of our global physical prior method
in improving the accuracy of smoke reconstruction.

Fig. 10. Rendering and visualization of the density fields reconstructed on the
“chair” scene. Our method reconstructs the density distribution of the smoke
using 5 camera views.

2) Laplacian Eigenfunctions Ablation Experiments: In our
method, we use the divergence-free Laplacian projection to
ensure the divergence-free property of the reconstructed velocity
field. To evaluate its effectiveness, we conducted ablation
experiments where we replaced the divergence-free Laplacian
projection with the traditional pressure projection method,
specifically the Multi-Grid Preconditioned Conjugate Gradient
(MGPCG) method [31].

Table IV presents a comparison of the time cost between the
divergence-free Laplacian projection and the low/high tolerance
MGPCG pressure projection. Interestingly, our Laplacian-based
projection method exhibits shorter computation times even
compared to the low tolerance MGPCG method, while still
achieving a continuous form of incompressibility that closely
resembles reality.

Figure 7 and Table II demonstrate the smoke reconstruc-
tion results obtained using the two projection methods. The
comparison clearly shows that the use of the divergence-free
Laplacian projection effectively reduces the error in smoke
reconstruction and eliminates the need for the time-consuming
pressure projection step.

We also evaluated the scatterless projection method of the
velocity field based on the scatterless Laplacian eigenfunction
proposed in our work. We compared it with the traditional
pressure projection method using different iterative solution
accuracies. The results are presented in Table IV. It is observed
that the scatterless projection method achieves better projection
accuracy compared to MGPCG with a tolerance of 1e-3 but is
not as accurate as MGPCG with higher precision. This suggests
that the current discrete field size may not fully highlight the
projection accuracy advantage of the scatterless projection
method. However, as the discrete field resolution improves,
the advantage of the scatterless projection method, with its
high convergence order as a spectral method, will become
more apparent, resulting in faster improvement in projection
accuracy.

Furthermore, we compared the calculation time of our
method with the traditional pressure projection method. The
calculation time of our method is less than that of MGPCG
with a tolerance of 1e-3, only half that of MGPCG with a
tolerance of 1e-6, and even 4.5 times less than that of MGPCG
with a tolerance of 1e-9. Thus, our method’s calculation time is
comparable to that of the traditional method with low accuracy
and exhibits significant advantages over the traditional method
with high precision. Table III presents the relative RMSE error
comparison between MGPCG and our method at different
orders. The results reveal that as the order increases, our method
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rapidly converges towards the accuracy of full-order methods.
Notably, leveraging our divergence-free projection approach
allows our final reconstruction accuracy to even surpass that
of full-order methods.

In Figure 10, the results of our method at various scales
during the optimization process are depicted. It is evident that
as the scale increases, enabling a higher optimization frequency,
the converged external force field exhibits more pronounced
high-frequency velocities. Since the ground truth external force
field is predominantly low-frequency, the final result closely
resembles the ground truth due to the increased scale and
optimization frequency.

The error analysis of the projected derivative is an important
aspect to consider in our scatter-free projection method. It
is worth noting that the calculation process of the derivative
during the back-propagation phase mirrors that of the forward
projection process. Hence, if we only focus on the backward
differentiation process, the derivative error would exhibit
similarities to the projection error shown in the first column
of Table IV. However, it is crucial to take into account the
entire optimization process, encompassing both the forward
projection and backward differentiation stages, when evaluating
the derivative. This is because the accuracy of the forward
projection process directly impacts the resulting derivative.

Assuming that the target velocity field after the scatter-free
projection is denoted as utar, we define the target function
as σ(u) = ||P(u) − utar||22. Utilizing the idempotence and
linearity of the projection, we deduce that dϕ

du = P(2(P(u)−
utar)) = 2P(u − utar). Ideally, the derivative should be
zero. However, during the actual derivative calculation, both
in our proposed method and the traditional approach, the
derivative is calculated using two projection operations for
generality purposes. As a result, there exists a derivative error,
as demonstrated in the second column of Table IV.

Remarkably, our method achieves a projected derivative
accuracy that closely approximates the high precision projection
accuracy, falling between the MGPCG(1e-6) and MGPCG(1e-
9) methods. This signifies the effectiveness of our approach in
accurately estimating the derivative, which is crucial for captur-
ing intricate dynamics and fine details during the optimization
process.

3) Comparison with State-of-the-art: We compare our
method with ScalarFlow (SF) [9], Global Transport (Glob-
Trans) [12], Pinf [6] and Sheng’s work [35]. Table II presents
the quantitative comparison results. Both ScalarFlow and Glob-
Trans employ local physical priors. ScalarFlow reconstructs
the fluid frame by frame, using the physical prior on velocity
evolution only to initialize the estimation for the next frame.
While their reconstructed velocities appear better than ours due
to sharing codes with mantaflow, the reconstructed densities
are inferior. This discrepancy arises because errors in previous
reconstructions accumulate and hinder the convergence of
the optimization process. On the other hand, Glob-Trans
utilizes global density advection to connect all densities but
treats velocities independently. They incorporate local physical
priors by introducing additional velocity advection matching
regularization. However, the reconstructed results, as shown in
Table II, are unsatisfactory. The results from Pinf and Sheng’s

methods highlight a significant manual tuning requirement
for regularization terms, as their approaches are not entirely
physics-based. This characteristic may lead to suboptimal
performance on new data. Upon analysis, we observe extremely
high density values near the inflow region, likely caused
by the low/high density value ambiguity in the rendering
process mentioned in their paper, as we employ images with
a black background. Additionally, their velocity divergence is
high because they consider the divergence-free condition as a
soft regularization term with manually set coefficients. This
experiment reveals the sensitivity of manually set regularization
coefficients, which may lead to suboptimal results.

Table V presents the time costs of these methods. Our
method utilizes 4.188GB of GPU memory, whereas MGPCG
uses 7.344GB, which is only 0.75 times of the latter. Our
method outperforms Glob-Trans in terms of computational
time, even when considering the time-consuming divergence-
free projection in each iteration and each frame. Two key factors
contribute to this improvement. First, our method requires only
one-fifth of the number of iterations due to the utilization
of a global physical prior. Second, the Taichi [17] language
employed in our method provides higher-performance GPU
computing compared to TensorFlow [1] used by Glob-Trans.
In our implementation, differentiable rendering accounts for
approximately 30% of the overall computation time, while
differentiable fluid simulation occupies around 67% of the
time (with more than 95% of this time dedicated to Laplacian
projection).

4) Reconstruction on complex scene: In the final test, our
algorithm is evaluated in intricate scenes featuring complex-
shaped obstacles and directional lighting with an environment
map. A gray color serves as the background during training.
We employ five evenly distributed cameras arranged in a circle,
simulating the chair scene at a resolution of 312 × 178 × 100 for
120 steps. The domain incorporates a strong free stream velocity
without a force field. The simulation involves a shallow sheet
of smoke passing through the chair from the left. The outcome
demonstrates the effectiveness of our method in reconstructing
smoke amidst complex obstacles.

B. Comparison on Real Data

We obtained real captured 5-view videos of a rising smoke
plume consisting of 120 frames from the ScalarFlow dataset
[9]. Figure 8 showcases the input 5-view real captured images
of the last frame, along with the residual rendering results of
the reconstructed density by different methods. The residual is
doubled to show the difference clearer. When comparing with
the ground truth, Glob-Trans exhibits high-frequency noise,
likely due to its reconstruction starting from random values
inside the visual hull. On the other hand, ScalarFlow and Pinf
produces smoother results, but we can observe disturbances
near the boundary region that deviate from the ground truth.
These disturbances arise from the accumulation of previous
errors. In contrast, our method yields reconstructions that better
align with the input images, demonstrating improved accuracy
and fidelity.
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V. CONCLUSION AND DISCUSSION

In conclusion, a novel method is introduced for recovering
the density and velocity of a fluid from an input video sequence.
The key novelty of our approach lies in the implementation
of derivative tracking through differentiable fluid solvers and
renderers, enabling the reconstruction process to consider
a global physical prior rather than just focusing on deriva-
tives between adjacent frames. Additionally, we employ the
Laplacian eigenfunction for velocity projection, ensuring the
divergence-free condition of the velocity field and mitigating
the accumulation of reconstruction errors over the sequence.
Experimental results demonstrate our effectiveness in improving
the accuracy of fluid reconstruction and generating more
natural velocity fields. However, there are still opportunities for
further improvement, such as extending the method to handle
fluids with rigid bodies and exploring advanced optimization
techniques and fluid renderers to enhance the quality of the
reconstruction results
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