1,369 research outputs found

    Relativistic mean-field approximation with density-dependent screening meson masses in nuclear matter

    Full text link
    The Debye screening masses of the σ\sigma, ω\omega and neutral ρ\rho mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. It shows a different result with Brown-Rho scaling, which implies a reduction in the mass of all the mesons in the nuclear matter except the pion. Replacing the masses of the mesons with their corresponding screening masses in Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the non-linear self-coupling terms of mesons.Comment: 14 pages, 3 figures, REVTEX4, Accepted for publication in Int. J. Mod. Phys.

    Geometric bionics: Lotus effect helps polystyrene nanotube films get good blood compatibility

    Get PDF
    Various biomaterials have been widely used for manufacturing biomedical applications including artificial organs, medical devices and disposable clinical apparatus, such as vascular prostheses, blood pumps, artificial kidney, artificial hearts, dialyzers and plasma separators, which could be used in contact with blood^1^. However, the research tasks of improving hemocompatibility of biomaterials have been carrying out with the development of biomedical requirements^2^. Since the interactions that lead to surface-induced thrombosis occurring at the blood-biomaterial interface become a reason of familiar current complications with grafts therapy, improvement of the blood compatibility of artificial polymer surfaces is, therefore a major issue in biomaterials science^3^. After decades of focused research, various approaches of modifying biomaterial surfaces through chemical or biochemical methods to improve their hemocompatibility were obtained^1^. In this article, we report that polystyrene nanotube films with morphology similar to the papilla on lotus leaf can be used as blood-contacted biomaterials by virtue of Lotus effect^4^. Clearly, this idea, resulting from geometric bionics that mimicking the structure design of lotus leaf, is very novel technique for preparation of hemocompatible biomaterials

    Effective photon mass in nuclear matter and finite nuclei

    Full text link
    Electromagnetic field in nuclear matter and nuclei are studied. In the nuclear matter, because the expectation value of the electric charge density operator is not zero, different in vacuum, the U(1) local gauge symmetry of electric charge is spontaneously broken, and consequently, the photon gains an effective mass through the Higgs mechanism. An alternative way to study the effective mass of photon is to calculate the self-energy of photon perturbatively. It shows that the effective mass of photon is about 5.42MeV5.42MeV in the symmetric nuclear matter at the saturation density ρ0=0.16fm3\rho_0 = 0.16fm^{-3} and about 2.0MeV2.0MeV at the surface of 238U{}^{238}U. It seems that the two-body decay of a massive photon causes the sharp lines of electron-positron pairs in the low energy heavy ion collision experiments of 238U+232Th{}^{238}U+{}^{232}Th .Comment: 10 pages, 2 figures, 1 table, REVTEX4, submitted to Int. J. Mod. Phys.

    Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production

    Get PDF
    Background Laccases have potential applications in detoxification of lignocellulosic biomass after thermochemical pretreatment and production of value-added products or biofuels from renewable biomass. However, their application in large-scale industrial and environmental processes has been severely thwarted by the high cost of commercial laccases. Therefore, it is necessary to identify new laccases with lower cost but higher activity to detoxify lignocellulosic hydrolysates and better efficiency to produce biofuels such as bioethanol. Laccases from Ganoderma lucidum represent proper candidates in processing of lignocellulosic biomass. Results G. lucidum 77002 produces three laccase isoenzymes with a total laccase activity of 141.1 U/mL within 6 days when using wheat bran and peanut powder as energy sources in liquid culture medium. A new isoenzyme named Glac15 was identified, purified, and characterized. Glac15 possesses an optimum pH of 4.5 to 5.0 and a temperature range of 45°C to 55°C for the substrates tested. It was stable at pH values ranging from 5.0 to 7.0 and temperatures lower than 55°C, with more than 80% activity retained after incubation for 2 h. When used in bioethanol production process, 0.05 U/mL Glac15 removed 84% of the phenolic compounds in prehydrolysate, and the yeast biomass reached 11.81 (optimal density at 600 nm (OD600)), compared to no growth in the untreated one. Addition of Glac15 before cellulase hydrolysis had no significant effect on glucose recovery. However, ethanol yield were improved in samples treated with laccases compared to that in control samples. The final ethanol concentration of 9.74, 10.05, 10.11, and 10.81 g/L were obtained from samples containing only solid content, solid content treated with Glac15, solid content containing 50% prehydrolysate, and solid content containing 50% prehydrolysate treated with Glac15, respectively. Conclusions The G. lucidum laccase Glac15 has potentials in bioethanol production industry

    The metagenomics of soil bacteria and fungi and the release of mechanical dormancy in hard seeds

    Get PDF
    Persistence in the soil is a function of seed physiology, particularly non-germination and inherent lifespan. However, for seeds with mechanical dormancy, non-germination is also a function of the composition and activity of the soil microbiota. We attempted to screen out microorganisms in the soil that can specifically and rapidly decompose the hard fruit pericarps of Tilia miqueliana Maxim., a unique native tree species in China. Using the classical replica plating method, more than 100 different culturable microorganisms that could rapidly erode the pericarp were collected from the surface of pericarps under different culture conditions. At the same time, we successfully extended the concept of metagenomics and applied it to the identification of mixed artificial cultures. The decomposition process of the pericarps in soil was also simulated artificially. The physical and chemical data suggested a potential mechanism of microbial scarification and cracking in pericarp, whilst the embryos inside the eroded fruits retained good viability. Our discoveries could pave the way for the removal of physical and mechanical obstacles that prevent hard coat seeds from germinating. We anticipate that the use of this technology will improve the germination of other hard coat seeds. More research is needed to investigate the impacts on other seeds. The findings of this research can inform the design of experiments on the seed ecology of persistence
    corecore