12 research outputs found

    Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all

    No full text
    This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea at high energies" at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them, and it benefited from inputs from the users' communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the U.S., established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea at high energies" at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them, and it benefited from inputs from the users' communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the U.S., established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier

    Precision Studies of QCD in the Low Energy Domain of the EIC

    No full text
    103 pages,47 figuresThe manuscript focuses on the high impact science of the EIC with objective to identify a portion of the science program for QCD precision studies that requires or greatly benefits from high luminosity and low center-of-mass energies. The science topics include (1) Generalized Parton Distributions, 3D imagining and mechanical properties of the nucleon (2) mass and spin of the nucleon (3) Momentum dependence of the nucleon in semi-inclusive deep inelastic scattering (4) Exotic meson spectroscopy (5) Science highlights of nuclei (6) Precision studies of Lattice QCD in the EIC era (7) Science of far-forward particle detection (8) Radiative effects and corrections (9) Artificial Intelligence (10) EIC interaction regions for high impact science program with discovery potential. This paper documents the scientific basis for supporting such a program and helps to define the path toward the realization of the second EIC interaction region

    Precision Studies of QCD in the Low Energy Domain of the EIC

    No full text
    103 pages,47 figuresThe manuscript focuses on the high impact science of the EIC with objective to identify a portion of the science program for QCD precision studies that requires or greatly benefits from high luminosity and low center-of-mass energies. The science topics include (1) Generalized Parton Distributions, 3D imagining and mechanical properties of the nucleon (2) mass and spin of the nucleon (3) Momentum dependence of the nucleon in semi-inclusive deep inelastic scattering (4) Exotic meson spectroscopy (5) Science highlights of nuclei (6) Precision studies of Lattice QCD in the EIC era (7) Science of far-forward particle detection (8) Radiative effects and corrections (9) Artificial Intelligence (10) EIC interaction regions for high impact science program with discovery potential. This paper documents the scientific basis for supporting such a program and helps to define the path toward the realization of the second EIC interaction region

    Precision Studies of QCD in the Low Energy Domain of the EIC

    No full text
    103 pages,47 figuresThe manuscript focuses on the high impact science of the EIC with objective to identify a portion of the science program for QCD precision studies that requires or greatly benefits from high luminosity and low center-of-mass energies. The science topics include (1) Generalized Parton Distributions, 3D imagining and mechanical properties of the nucleon (2) mass and spin of the nucleon (3) Momentum dependence of the nucleon in semi-inclusive deep inelastic scattering (4) Exotic meson spectroscopy (5) Science highlights of nuclei (6) Precision studies of Lattice QCD in the EIC era (7) Science of far-forward particle detection (8) Radiative effects and corrections (9) Artificial Intelligence (10) EIC interaction regions for high impact science program with discovery potential. This paper documents the scientific basis for supporting such a program and helps to define the path toward the realization of the second EIC interaction region
    corecore