5,854 research outputs found

    Topological superconductivity at the edge of transition metal dichalcogenides

    Full text link
    Time-reversal breaking topological superconductors are new states of matter which can support Majorana zero modes at the edge. In this paper, we propose a new realization of one-dimensional topological superconductivity and Majorana zero modes. The proposed system consists of a monolayer of transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se) on top of a superconducting substrate. Based on first-principles calculations, we show that a zigzag edge of the monolayer MX2 terminated by metal atom M has edge states with strong spin-orbit coupling and spontaneous magnetization. By proximity coupling with a superconducting substrate, topological superconductivity can be induced at such an edge. We propose NbS2 as a natural choice of substrate, and estimate the proximity induced superconducting gap based on first-principles calculation and low energy effective model. As an experimental consequence of our theory, we predict that Majorana zero modes can be detected at the 120 degree corner of a MX2 flake in proximity with a superconducting substrate

    Full counting statistics of renormalized dynamics in open quantum transport system

    Full text link
    The internal dynamics of a double quantum dot system is renormalized due to coupling respectively with transport electrodes and a dissipative heat bath. Their essential differences are identified unambiguously in the context of full counting statistics. The electrode coupling caused level detuning renormalization gives rise to a fast-to-slow transport mechanism, which is not resolved at all in the average current, but revealed uniquely by pronounced super-Poissonian shot noise and skewness. The heat bath coupling introduces an interdot coupling renormalization, which results in asymmetric Fano factor and an intriguing change of line shape in the skewness.Comment: 9 pages, 5 figure

    Self-Learning Determinantal Quantum Monte Carlo Method

    Get PDF
    Self-learning Monte Carlo method [arXiv:1610.03137, 1611.09364] is a powerful general-purpose numerical method recently introduced to simulate many-body systems. In this work, we implement this method in the framework of determinantal quantum Monte Carlo simulation of interacting fermion systems. Guided by a self-learned bosonic effective action, our method uses a cumulative update [arXiv:1611.09364] algorithm to sample auxiliary field configurations quickly and efficiently. We demonstrate that self-learning determinantal Monte Carlo method can reduce the auto-correlation time to as short as one near a critical point, leading to O(N)\mathcal{O}(N)-fold speedup. This enables to simulate interacting fermion system on a 100×100100\times 100 lattice for the first time, and obtain critical exponents with high accuracy.Comment: 5 pages, 4 figure
    • …
    corecore