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The self-learning Monte Carlo method is a powerful general-purpose numerical method recently introduced
to simulate many-body systems. In this work, we extend it to an interacting fermion quantum system in the
framework of the widely used determinant quantum Monte Carlo. This method can generally reduce the
computational complexity and moreover can greatly suppress the autocorrelation time near a critical point. This
enables us to simulate an interacting fermion system on a 100 × 100 lattice even at the critical point and obtain
critical exponents with high precision.
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Introduction. Numerous intermetallic compounds with
intriguing phenomena, such as non-Fermi liquids [1] and un-
conventional superconductivity [2–4] emerging from quantum
critical fluctuations (antiferromagnetic [2–4], nematic [5,6],
etc.), demand proper theoretical understanding. However,
these systems are usually strongly correlated and can only be
solved by nonperturbative methods. In the past few years, after
several attempts [7–14], people have realized that determinant
quantum Monte Carlo (DQMC) is one of the most suitable
methods and sometimes the only available choice.

DQMC [15–17] has been widely used in the investigation of
correlated fermion systems [18–32]. Despite great successes,
the method also suffers from serious difficulties. In DQMC,
one introduces bosonic auxiliary fields to decouple the fermion
interactions1 and then simulates the whole system by updating
bosonic fields based on the corresponding weights, whose
computation is very heavy since they require determinant
calculations to integrate out the fermion degrees of freedom.
Currently, even the fastest algorithm available still has the
computational complexity in a polynomial form [33] of
O(βN3) [34], where β is the inverse temperature and N is
the system size. Even worse, this algorithm has to employ
local updates and the generated configurations are usually not
statistically independent, requiring long autocorrelation time.
Particularly around phase transition points, the autocorrelation
time becomes extremely long and also dramatically increases
with the system size. Together, these severe scaling behaviors
seriously limit the applications of DQMC in interacting
fermion systems. For instance, in two-dimensional (2D)
strongly correlated fermion systems, 24 × 24 is a typically
accessible size.

Recently, we proposed a general-purpose method, self-
learning Monte Carlo (SLMC), to speed up MC simula-
tions [35–37]. Very encouragingly, with a highly efficient
cumulative update algorithm, SLMC can generally reduce
the computational complexity and dramatically decrease the
autocorrelation time in fermion systems [36], yet SLMC is still

1In some cases [7–12], the bosonic fields already exist in the
original Hamiltonian, and their fluctuations mediate effective fermion
interactions.

an unbiased MC method without approximation. In SLMC,
configurations are first updated much more cheaply according
to the simple effective bosonic Hamiltonian self-learned in
advance, instead of the original Fermion Hamiltonian, and
heavy-duty matrix operations are greatly reduced. At the
same time, the simulation is guaranteed to be statistically
exact by the detailed balance principle following the original
Hamiltonian deciding whether the configurations proposed by
cumulative update of the effective model can be accepted.

In this Rapid Communication, we extend SLMC to
fermionic quantum many-body systems in the framework
of DQMC, referred to as SLDQMC. It manages to greatly
reduce the computational complexity of the original DQMC,
typically, by a factor of min{O(β),O(N )}. Hence, as either
the system sizes are larger or the temperature is lower, the
speedup of SLDQMC over DQMC is greater. Moreover, in
SLDQMC, the autocorrelation time is effectively reduced to
O(1) around phase transition points, independent of system
size. With these advantages, we are able to simulate a generic
2D interacting fermion model with system size 100 × 100, a
number unaccessible in conventional DQMC.

Basics of DQMC. To set the stage for SLDQMC, we need
to first briefly introduce DQMC. Let us start with the partition
function of a general fermionic quantum many-body system,

Z =
∑
{C}

φ(C) det (1 + B(β,0; C)), (1)

where C = {si,τ } is the auxiliary field (si,τ ) configuration after
the Hubbard-Stratonovich (HS) transformation is applied to
decouple the fermion interaction terms in the Hamiltonian
[17] or the bosonic filed already involved in the original model
[7]. The imaginary time β is divided into M time slices
(M�τ = β) and hence the configurations C of the bosonic
fields have both spatial and temporal dependence. φ(C) is the
bare part (including the transformation constant) of the bosonic
field, and it is a scalar function. Now, for each auxiliary field
configuration, the fermions are noninteracting and can hence
be traced out, resulting in a determinant det (1 + B(β,0; C)).
The matrix B(β,0), depending on configurations C, is a
short form for the matrix product BMBM−1 · · · B1, where the
matrix at time slice τ is Bτ = exp(�τK) exp (V(si,τ )), with K
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being the tight-binding hopping matrix of the bare system
in the single-particle basis and V(si,τ ) being the fermion
interaction part after HS transformation, and it describes the
coupling between bosonic field and fermion bilinear [17]. The
dimension of matrix Bτ is equal to the number of degrees
of freedom of fermion and scales with system size N ∼ Ld ,
with L being the linear system size and d being the spatial
dimension.

To update the auxiliary field configuration in DQMC, one
performs local updates [15–17], i.e., by trying to flip the
bosonic spins si,τ one by one through the space-time lattice
βN . The acceptance ratio of such an update involves a ratio of
two determinants before and after the flip. The computational
complexity for evaluating a determinant is O(N3), but the
local nature of the update enables one to perform a fast update
with complexity O(1) to calculate the ratio and complexity
O(N2) to update the Green’s function if the local update is
accepted. However, since one needs to scan over the space-time
lattice—this is called one sweep—to attempt flip the βN

numbers of auxiliary field, the local update of DQMC is of
computational complexity O(βN3).

There is another factor that further increases the com-
putational complexity for all the Monte Carlo simulations:
the autocorrelation time τL. In the context of DQMC, τL is
the number of sweeps one needs to perform to have two
statistically independent configurations, such that Monte Carlo
measurements can be taken. Therefore, the total computational
complexity in DQMC is O(βN3τL). At (quantum) critical
points or when there are strong correlations in the auxiliary
field, the autocorrelation time usually becomes very large
and will scale with system size τL ∼ Lz, which is referred as
critical slowing down, and z is the dynamic exponent of MC
simulation. For local update, z could be very large (�2). In the
classical and quantum spin or bosonic systems, tailor-made
global update schemes, such as the Swendsen-Wang [38],
Wolff [39], and loop and directed loop [40,41], have been
designed, and the dynamic exponent z can be greatly reduced.
But these global update schemes are very model dependent,
and in the framework of DQMC, there is still no practical
global update available.

Formalism of SLDQMC. To overcome these problems, we
design SLDQMC as a general-purpose solution to fermionic
quantum Monte Carlo simulations. Below we describe its
procedure in four steps.

At step (i), we use the local update of DQMC to generate
enough configurations according to the original Hamiltonian.
At step (ii), we try to obtain an effective model by self-learning
[35–37]. The effective model can be very general,

H eff = E0 +
∑

(iτ );(j,τ ′)

Ji,τ ;jτ ′si,τ sj,τ ′ + · · · , (2)

where Ji,τ ;jτ ′s parametrizes the two-body interaction between
any bosonic field in space-time. More-body interactions,
denoted as · · · , can also be included. In practice, we can use
symmetries (rotation, translation, etc.) to reduce the number
of independent interactions. We introduce a parameter γ as
the range of the interactions considered in the effective model
and it will be tuned to make the effective model close enough
to the original model.

The training procedure is straightforward. Given a configu-
ration C and corresponding weight ω[C], generated in the step
(i), we have

−βH eff[C] = ln(ω[C]). (3)

By combining Eqs. (2) and (3), optimized values of {Ji,τ ;jτ ′ }
can be readily obtained through a multilinear regression
[35,36] using all the configurations prepared in step (i).

At step (iii) of SLDQMC, we perform multiple local
updates with H eff (as in general the H eff will contain a
nonlocal term, which makes the cluster update difficult to
implement). Unlike from the local update in DQMC [15–17],
the local move of H eff is very fast, as there are no matrix
operations involved. Furthermore, to generate statistically
independent configurations at (quantum) critical point, we
need to perform about τL sweeps of local update. With these
local updates of effective model, the configuration has been
changed substantially, and we take the final configuration as a
proposal for a global update for the original model. This entire
process is denoted as a cumulative update. The acceptance
ratio of the cumulative update can be derived from the detail
balance as

A(C → C ′) = min

{
1,

exp(−βH [C ′])
exp(−βH [C])

exp(−βH eff[C])

exp(−βH eff[C ′])

}
.

(4)

Here one can clearly see that the closer H eff is to the
original Hamiltonian H with fermion integrated out, the larger
A(C → C ′) becomes, and eventually, for a sufficiently good
H eff, A(C → C ′) ∼ 1 can be achieved in all practical terms
(as shown below). At step (iv), following this detailed balance
decision, we decide to accept or reject the final configuration.
By repeating steps (iii) and (iv), we can simulate the interaction
fermion systems with high efficiency.

Before we reveal the results of SLDMQC, let us dis-
cuss the enormous speedup of SLDQMC over DQMC.
The complexity of the cumulative update in SLDQMC is
O(γβNτL + βN2 + N3) and it is comprised of two parts.
First, the operation to update the effective model is O(γβNτL).
γ is the number of operations needed for a single local update
on effective model, there are βN bosonic fields in total, and
one performs τL sweeps on all the space-time bosonic fields.
Second, the complexity of calculating the acceptance ratio
in Eq. (4) is O(βN2 + N3). βN2 comes from the evaluation
of matrix B(β,0; C), in that B(β,0; C) is the product of O(β)
number of Bτ matrices, each Bτ is a product of O(N ) number
of sparse matrices, while the complexity of the dense and
sparse matrices production here is O(N ). The other O(N3)
comes from the complexity of calculating the determinant
det(1 + B(β,0; C)).

Comparing the O(γβNτL + βN2 + N3) of SLDQMC and
O(βN3τL) of DQMC, we define a speedup factor S of
SLDQMC over DQMC and find

S = min

(
N2

γ
,NτL,βτL

)
. (5)
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For many models, we only need include short-range in-
teractions in the effective model [35,36], and in this case,
SLDQMC can easily reduce the computational complexity by
at least O(NτL) or O(βτL); i.e., as the systems are larger and
temperatures are lower, the SLDQMC gains more speedup.
Moreover, it is clear that SLDQMC with cumulative update
effectively renders the autocorrelation time for only one sweep,
and hence fully cures the critical slowdown at (quantum)
critical points. At last, it is worth noting that even in the
worst case, where we need to take long-range interactions
in H eff into account, γ ∼ βN , a large speedup, S = O(N/β)
can still be guaranteed; i.e., for a given temperature β, we
can achieve at least O(N )-fold speedup. All those advan-
tages make SLDQMC very suitable to study the interacting
fermion systems with large sizes, especially around critical
points.

We also note, at low temperatures, the matrix multiplication
becomes numerically unstable and the commonly used stabi-
lization algorithm scales with O(βN3), which would dominate
the complexity of multiplication itself. However, even in this
case, SLDQMC still offers the speedup discussed above by
overcoming the critical slowdown. Attempts to improve the
algorithm of stabilization is in progress.

Results. To demonstrate the power of SLDQMC, we
consider an interacting fermion model with ferromagnetic
transverse-field Ising spins coupled to a Fermi surface. The
Hamiltonian is comprised of three parts,

H = Hf + Hs + Hsf . (6)

The fermion part, Hf = −t
∑

〈ij〉λσ (c†iλσ cjλσ + H.c.) −
μ

∑
iλσ niλσ , describes spin-1/2 fermion hoppings on a bi-

layer (λ = 1,2) square lattice, with intralayer hopping t

and chemical potential μ. The Ising spin part is Hs =
−J

∑
〈ij〉 s

z
i s

z
j − h

∑
i s

x
i , with ferromagnetic J and transverse

field h introducing (quantum) fluctuations to the system. At
T = 0, the Ising spins go though a quantum phase transition
from ferromagnetic (FM) phase to paramagnetic (PM) phase
at hc/J = 3.04 with (2 + 1)d Ising universality [10,42,43],
and at finite temperature, the transition from FM to PM is
of 2d Ising universality. The Hsf = −ξ

∑
i s

z
i (σ z

i1 − σ z
i2) is

the coupling between Ising spin and fermion spin, and the
coupling favors a parallel (antiparallel) alignment of Ising spin
and fermion spin in layer 1 (2). Such bilayer setup guarantees
a sign-problem-free QMC simulation in the framework of
DQMC [10].

Once switching on the coupling, ξ = 1, the fluctuations in
the Ising spins introduce effective interaction to the fermions,
and the fermions will in turn introduce long-range interactions
among the Ising spins. Our model in Eq. (6) thus provides
an ideal situation to study the behavior of itinerant electrons
with quantum fluctuations in the vicinity of (quantum) critical
points in a controlled manner. The itinerant quantum critical
point (FM-QCP in this case), Fermi-liquid instabilities at mag-
netic quantum phase transition [44,45], and its applications to
heavy-fermion materials and transition-metal alloys (cuprates
and pnictides) are of vital importance and broad interest to the
condensed-matter physics community.

Theoretical approaches able to address the quantum phase
transition of the model in Eq. (6) and the properties of the

FIG. 1. (a) Schematic phase diagram of the transverse-field Ising
model coupled to Fermi surface. As a function of the transverse
field, the system (both fermions and Ising spins) goes through a
transition from ferromagnetic (FM) metal to paramagnetic (PM)
metal. The black dot is the finite-temperature critical point [T =
1,hc = 2.774(1)] where we systematically demonstrate the superior
performance of SLDQMC over DQMC. (b) Autocorrelation function
C(τ ) for L = 16 system at the critical point in panel (a), for local
update with DQMC, where the autocorrelation time is very long
(larger than 600 sweeps). The autocorrelation function is defined as
C(τ ) = (〈M(0)M(τ )〉 − 〈M〉2)/(〈M2〉 − 〈M〉2) with M(τ ) being the
total magnetization of Ising spins for the τ th sweep.

quantum critical region are still under intensive development
[46–51]. Recent numerical evidence shows the universality is
different from both the (2 + 1)d Ising as well as Hertz-Millis-
Moriya predictions, and non-Fermi liquid is being observed in
the quantum critical region [14].

Although the quantum critical properties are complicated,
finite-temperature FM to PM phase transition is relative
simple and one can have a simple schematic phase diagram
as shown in Fig. 1(a). In this work, we demonstrate the
power of SLDQMC by focusing on FM-PM critical point
at a finite temperature: β = 1.0, �τ = 0.05, M = 20, and
hc = 2.774(1), as the black dot in Fig. 1(a). At the critical
point, configurations of Ising spins generated by local updates
become strongly correlated, as shown by the autocorrelation
function of Ising spin in Fig. 1(b) for L = 16, and it is the
exact manifestation of critical slowdown.

To train the effective model in Eq. (2), we use 1 − R2 =
〈(H eff − H )2〉/(〈H 2〉 − 〈H 〉2), where R2 is the coefficient of
determination (as a figure of merit “score”) for the multilinear
regression in Eq. (3). Figure 2 shows the 1 − R2 of the
multilinear regression as we vary the range of interactions in
the effective model. For the purple line in Fig. 2, we fix the
Ji,τ ;j,τ to only nearest neighbor in the spatial direction and
explore the range of the interaction in the temporal direction.
It turns out that the interaction in the temporal direction is
long ranged, and since we choose M = 20 time slices in
total, one needs to consider the interaction up to M = 10.
The spatial range of interaction, on the other hand, is short
ranged. As shown with green line in the Fig. 2, we keep the
interaction in the temporal direction to M = 10 and plot of
1 − R2 as a function of spatial range; one can clearly see
that after the second nearest neighbor, 1 − R2 is already
converged to a very small value. In the real fitting, when let the
range of interactions in both temporal and spatial directions
is free, we find for an L = 8 system at β = 1.0, in total 16
Ji,τ ;j,τ ′s (two spatial neighbors, ten temporal neighbors, four
spatial-temporal neighbors) in H eff are needed to give the best
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FIG. 2. The coefficient of determination for multilinear regres-
sionR2 decides how many Ji,τ ;j,τ ′ s (how many neighbor interactions)
need to be considered in the H eff. Purple line shows the 1 − R2 for
the temporal neighbors while fixing the spatial neighbor nearest.
Green line shows the 1 − R2 for the spatial neighbors while fixing
the temporal neighbors. The temporal interaction is more long ranged
(up to the tenth nearest neighbor) but the spatial interaction is short
ranged (up to the second nearest neighbor).

fit at the critical point. We have used 105 configurations in the
fitting.

With effective model obtained from L = 8, we now perform
SLDQMC with cumulative update for larger system sizes. The
great improvement is shown in Fig. 3. The autocorrelation time
of DQMC presents the typical critical slowdown behavior:
τL ∝ Lz with z = 2.1(1). However, SLDQMC overcomes
such a slowdown completely: τL is a constant as small as one
for all the system sizes simulated, and the dynamic exponent
of SLDQMC with cumulative update is practically z = 0.
Because of such superior behavior of SLDQMC, a speedup of
S = O(N ) for our 2d system is easily achieved, as promised
in the discussion of Eq. (5). We want to note although a
completely mathematical rigorous proof is lacking here, the
observed constant autocorrelation is a direct evidence of rapid
convergence of our method.

With such a speedup by SLDQMC, we are now able to ac-
cess an enormously large system. In Fig. 4, we measure the uni-
form Ising spin susceptibility χ (L) = 1

L2

∑
ij

∫ β

0 dτ 〈sz
i,τ s

z
j,0〉.

FIG. 3. Comparison of τL between DQMC and SLDQMC at the
critical point. For DQMC, the critical slowdown with τL ∼ L2.1(1)

is observed, while for SLDQMC, the critical slowdown has been
complete cured, τL = 1, for all the system sizes up to L = 100.

FIG. 4. Uniform spin susceptibilities χ at the critical point as a
function of system sizes, χ ∝ L2−η with η = 1

4 as the anomalous
dimension of 2d Ising universality. The linear system size is as large
as L = 100.

Since the system is at a 2d Ising critical point, χ (L) ∝ L2−η,
with d = 2 and η = 1

4 . We are able to simulate systems
as large as L = 100, and χ ∝ L2−η is clearly seen with
2 − η = 1.751(2).

Conclusions. In this Rapid Communication, we extended
the SLMC method [35,36] to the fermionic quantum many-
body systems and implemented it in the framework of DQMC.
The obtained SLDQMC, with cumulative update scheme,
provides a general-purpose solution to fermionic quantum
Monte Carlo simulations. We demonstrate that SLDQMC
can greatly reduce the autocorrelation time and speed up
the simulation at least of O(N )-fold at the critical point. To
illustrate the strength of SLDQMC, a 2D interacting fermion
system with size as 100 × 100 is able to be simulated. We
believe SLDQMC opens a promising avenue for the numerical
investigation of interacting fermionic systems. After three
decades of intensive studies with DQMC, it is now possible
to simulate system sizes as large as those in the QMC
study of quantum spin systems. Many standing problems
in the interacting fermion system are now resolved with
SLDQMC. For example, very recently, an application of
SLDQMC on the itinerant quantum criticality with both frus-
tration and non-Fermi-liquid behaviors has become available
[52].
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