2,091 research outputs found

    Systematic study of proton radioactivity of spherical proton emitters within various versions of proximity potential formalisms

    Full text link
    In this work we present a systematic study of the proton radioactivity half-lives of spherical proton emitters within the Coulomb and proximity potential model. We investigate 28 different versions of the proximity potential formalisms developed for the description of proton radioactivity, α\mathcal{\alpha} decay and heavy particle radioactivity. It is found that 21 of them are not suitable to deal with the proton radioactivity, because the classical turning points rinr_{\text{in}} cannot be obtained due to the fact that the depth of the total interaction potential between the emitted proton and the daughter nucleus is above the proton radioactivity energy. Among the other 7 versions of the proximity potential formalisms, it is Guo2013 which gives the lowest rms deviation in the description of the experimental half-lives of the known spherical proton emitters. We use this proximity potential formalism to predict the proton radioactivity half-lives of 13 spherical proton emitters, whose proton radioactivity is energetically allowed or observed but not yet quantified, within a factor of 3.71.Comment: 10 pages, 5 figures. This paper has been accepted by The European Physical Journal A (in press 2019

    Interacting Multiple Model Algorithm with the Unscented Particle Filter (UPF)

    Get PDF
    AbstractCombining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneuvering. Particle filter can be used to deal with the nonlinear or non-Gaussian problems and the unscented Kalman filter (UKF) can improve the approximate accuracy. Compared with other interacting multiple model algorithms in the simulations, the results demonstrate the validity of the new filtering method

    Quantum secure direct communication based on order rearrangement of single photons

    Full text link
    Based on the ideal of order rearrangement and block transmission of photons, we present a quantum secure direct communication scheme using single photons. The security of the present scheme is ensured by quantum no-cloning theory and the secret transmitting order of photons. The present scheme is efficient in that all of the polarized photons are used to transmit the sender's secret message except those chosen for eavesdropping check. We also generalize this scheme to a multiparty controlled quantum secret direct communication scheme which the sender's secret message can only be recovered by the receiver under the permission of all the controllers

    Efficient high-capacity quantum secret sharing with two-photon entanglement

    Full text link
    An efficient high-capacity quantum secret sharing scheme is proposed following some ideas in quantum dense coding with two-photon entanglement. The message sender, Alice prepares and measures the two-photon entangled states, and the two agents, Bob and Charlie code their information on their photons with four local unitary operations, which makes this scheme more convenient for the agents than others. This scheme has a high intrinsic efficiency for qubits and a high capacity.Comment: 5 pages, no figures. A inappreciable error is correcte

    Multiparty quantum secret sharing with pure entangled states and decoy photons

    Full text link
    We present a scheme for multiparty quantum secret sharing of a private key with pure entangled states and decoy photons. The boss, say Alice uses the decoy photons, which are randomly in one of the four nonorthogonal single-photon states, to prevent a potentially dishonest agent from eavesdropping freely. This scheme requires the parties of communication to have neither an ideal single-photon quantum source nor a maximally entangled one, which makes this scheme more convenient than others in a practical application. Moreover, it has the advantage of having high intrinsic efficiency for qubits and exchanging less classical information in principle.Comment: 5 pages, no figure

    X-Ray Repair Cross Complementing 4 (XRCC4) Genetic Single Nucleotide Polymorphisms and the Liver Toxicity of AFB1 in Hepatocellular Carcinoma

    Get PDF
    Our previous reports have shown that the genetic single-nucleotide polymorphisms (GSNPs) in the DNA repair gene X-ray repair cross complementing 4 (XRCC4) are involved in the carcinogenesis of hepatocellular carcinoma (HCC) induced by aflatoxin B1 (AFB1). However, the effects of GSNPs in the coding regions of XRCC4 on hepatic toxicity of AFB1 have been less investigated. We conducted a hospital-based clinic tissue samples with pathologically diagnosed HCC (n = 380) in a high AFB1 exposure area to explore the possible roles of GSNPs in the coding regions of XRCC4 in AFB1-induced HCC using liver toxicity assays. A total of 143 GSNPs were included in the present study and genotyped using the SNaPshot method, whereas the liver toxicity of AFB1 was evaluated using AFB1-DNA adducts in the tissues with HCC. In the clinicopathological samples with HCC, the average adduct amount is 2.27 ± 1.09 μmol/mol DNA. Among 143 GSNPs of XRCC4, only rs1237462915, rs28383151, rs762419679, rs766287987, and rs3734091 significantly increased the levels of AFB1-DNA adducts. Furthermore, XRCC4 GSNPs (including rs28383151, rs766287987, and rs3734091) also increased cumulative hazard for patients with HCC. These results suggest that the liver toxicity of AFB1 may be modified by XRCC4 GSNPs
    • …
    corecore