27,541 research outputs found

    Perturbational approach to the quantum capacity of additive Gaussian quantum channel

    Full text link
    For a quantum channel with additive Gaussian quantum noise, at the large input energy side, we prove that the one shot capacity is achieved by the thermal noise state for all Gaussian state inputs, it is also true for non-Gaussian input in the sense of first order perturbation. For a general case of nn copies input, we show that up to first order perturbation, any non-Gaussian perturbation to the product thermal state input has a less quantum information transmission rate when the input energy tend to infinitive.Comment: 5 page

    Local spin polarisation of electrons in Rashba semiconductor nanowires: effects of the bound state

    Full text link
    The local spin polarisation (LSP) of electrons in two typical semiconductor nanowires under the modulation of Rashba spin-orbit interaction (SOI) is investigated theoretically. The influence of both the SOI- and structure-induced bound states on the LSP is taken into account via the spin-resolved lattice Green function method. It is discovered that high spin-density islands with alternative signs of polarisation are formed inside the nanowires due to the interaction between the bound states and the Rashba effective magnetic field. Further study shows that the spin-density islands caused by the structure-induced bound state exhibit a strong robustness against disorder. These findings may provide an efficient way to create local magnetic moments and store information in semiconductors.Comment: 8 pages, 3 figure

    Perturbation theory of von Neumann Entropy

    Full text link
    In quantum information theory, von Neumann entropy plays an important role. The entropies can be obtained analytically only for a few states. In continuous variable system, even evaluating entropy numerically is not an easy task since the dimension is infinite. We develop the perturbation theory systematically for calculating von Neumann entropy of non-degenerate systems as well as degenerate systems. The result turns out to be a practical way of the expansion calculation of von Neumann entropy.Comment: 7 page

    Symmetries and Lie algebra of the differential-difference Kadomstev-Petviashvili hierarchy

    Full text link
    By introducing suitable non-isospectral flows we construct two sets of symmetries for the isospectral differential-difference Kadomstev-Petviashvili hierarchy. The symmetries form an infinite dimensional Lie algebra.Comment: 9 page

    Fast shuttling of a trapped ion in the presence of noise

    Get PDF
    We theoretically investigate the motional excitation of a single ion caused by spring-constant and position uctuations of a harmonic trap during trap shuttling processes. A detailed study of the sensitivity on noise for several transport protocols and noise spectra is provided. The effect of slow spring-constant drifts is also analyzed. Trap trajectories that minimize the excitation are designed combining invariant-based inverse engineering, perturbation theory, and optimal control

    Duality between quantum symmetric algebras

    Full text link
    Using certain pairings of couples, we obtain a large class of two-sided non-degenerated graded Hopf pairings for quantum symmetric algebras.Comment: 15 pages. Letters in Math. Phy., to appear soo

    Observational constraints on cosmic neutrinos and dark energy revisited

    Full text link
    Using several cosmological observations, i.e. the cosmic microwave background anisotropies (WMAP), the weak gravitational lensing (CFHTLS), the measurements of baryon acoustic oscillations (SDSS+WiggleZ), the most recent observational Hubble parameter data, the Union2.1 compilation of type Ia supernovae, and the HST prior, we impose constraints on the sum of neutrino masses (\mnu), the effective number of neutrino species (\neff) and dark energy equation of state (ww), individually and collectively. We find that a tight upper limit on \mnu can be extracted from the full data combination, if \neff and ww are fixed. However this upper bound is severely weakened if \neff and ww are allowed to vary. This result naturally raises questions on the robustness of previous strict upper bounds on \mnu, ever reported in the literature. The best-fit values from our most generalized constraint read \mnu=0.556^{+0.231}_{-0.288}\rm eV, \neff=3.839\pm0.452, and w=−1.058±0.088w=-1.058\pm0.088 at 68% confidence level, which shows a firm lower limit on total neutrino mass, favors an extra light degree of freedom, and supports the cosmological constant model. The current weak lensing data are already helpful in constraining cosmological model parameters for fixed ww. The dataset of Hubble parameter gains numerous advantages over supernovae when w=−1w=-1, particularly its illuminating power in constraining \neff. As long as ww is included as a free parameter, it is still the standardizable candles of type Ia supernovae that play the most dominant role in the parameter constraints.Comment: 39 pages, 15 figures, 7 tables, accepted to JCA
    • …
    corecore