547 research outputs found

    The Relevance BetweenIntangible Assets and Accounting Earnings Quality in Chinese High-Tech Enterprises

    Get PDF
    Much attention has been paid to Chinese listed companies, especially high technology enterprises. This paper follows 765 high technology enterprises in Shanghai and Shenzhen as sample, positively analyzes sample companies’ intangible assets influence on accounting earnings quality. Study finds that high technology enterprises gross margin is significantly and positively correlated with intangible assets, and negatively correlated with the operating profit margin. This paper gives more explanation based on the findings, and put forward the corresponding suggestions

    How do credit ratings affect corporate investment efficiency?

    Get PDF
    This study examines the impact of credit ratings on the efficiency of firms' investments. Using a large sample of US firms, we find a positive relationship between the existence of credit ratings and investment efficiency. The cross‐sectional analyses show the positive relationship is more pronounced for firms with greater information asymmetry and weaker corporate governance. Our results are robust to different methods to address potential endogeneity concerns, alternative measures of key variables, and the inclusion of additional control variables. Overall, the findings support the notion that credit rating agencies enhance information transparency and external monitoring, thereby allowing rated firms to promote investment efficiency. The findings contribute to our understanding of the significant role played by credit rating agencies in shaping firms' investment behaviour and efficiency

    Bionic Collapsible Wings in Aquatic-aerial Robot

    Full text link
    The concept of aerial-aquatic robots has emerged as an innovative solution that can operate both in the air and underwater. Previous research on the design of such robots has been mainly focused on mature technologies such as fixed-wing and multi-rotor aircraft. Flying fish, a unique aerial-aquatic animal that can both swim in water and glide over the sea surface, has not been fully explored as a bionic robot model, especially regarding its motion patterns with the collapsible pectoral fins. To verify the contribution of the collapsible wings to the flying fish motion pattern, we have designed a novel bio-robot with collapsible wings inspired by the flying fish. The bionic prototype has been successfully designed and fabricated, incorporating collapsible wings with soft hydraulic actuators, an innovative application of soft actuators to a micro aquatic-aerial robot. We have analyzed and built a precise model of dynamics for control, and tested both the soft hydraulic actuators and detailed aerodynamic coefficients. To further verify the feasibility of collapsible wings, we conducted simulations in different situations such as discharge angles, the area of collapsible wings, and the advantages of using ground effect. The results confirm the control of the collapsible wings and demonstrate the unique multi-modal motion pattern between water and air. Overall, our research represents the study of the collapsible wings in aquatic-aerial robots and significant contributes to the development of aquatic-aerial robots. The using of the collapsible wings must a contribution to the future aquatic-aerial robot

    SYNLOCO: Synthesizing Central Pattern Generator and Reinforcement Learning for Quadruped Locomotion

    Full text link
    The Central Pattern Generator (CPG) is adept at generating rhythmic gait patterns characterized by consistent timing and adequate foot clearance. Yet, its open-loop configuration often compromises the system's control performance in response to environmental variations. On the other hand, Reinforcement Learning (RL), celebrated for its model-free properties, has gained significant traction in robotics due to its inherent adaptability and robustness. However, initiating traditional RL approaches from the ground up presents computational challenges and a heightened risk of converging to suboptimal local minima. In this paper, we propose an innovative quadruped locomotion framework, SYNLOCO, by synthesizing CPG and RL that can ingeniously integrate the strengths of both methods, enabling the development of a locomotion controller that is both stable and natural. Furthermore, we introduce a set of performance-driven reward metrics that augment the learning of locomotion control. To optimize the learning trajectory of SYNLOCO, a two-phased training strategy is presented. Our empirical evaluation, conducted on a Unitree GO1 robot under varied conditions--including distinct velocities, terrains, and payload capacities--showcases SYNLOCO's ability to produce consistent and clear-footed gaits across diverse scenarios. The developed controller exhibits resilience against substantial parameter variations, underscoring its potential for robust real-world applications.Comment: 7 Page

    Towards Robust Aspect-based Sentiment Analysis through Non-counterfactual Augmentations

    Full text link
    While state-of-the-art NLP models have demonstrated excellent performance for aspect based sentiment analysis (ABSA), substantial evidence has been presented on their lack of robustness. This is especially manifested as significant degradation in performance when faced with out-of-distribution data. Recent solutions that rely on counterfactually augmented datasets show promising results, but they are inherently limited because of the lack of access to explicit causal structure. In this paper, we present an alternative approach that relies on non-counterfactual data augmentation. Our proposal instead relies on using noisy, cost-efficient data augmentations that preserve semantics associated with the target aspect. Our approach then relies on modelling invariances between different versions of the data to improve robustness. A comprehensive suite of experiments shows that our proposal significantly improves upon strong pre-trained baselines on both standard and robustness-specific datasets. Our approach further establishes a new state-of-the-art on the ABSA robustness benchmark and transfers well across domains.Comment: 10pages,1 figure,10 table

    Meta-DSP: A Meta-Learning Approach for Data-Driven Nonlinear Compensation in High-Speed Optical Fiber Systems

    Full text link
    Non-linear effects in long-haul, high-speed optical fiber systems significantly hinder channel capacity. While the Digital Backward Propagation algorithm (DBP) with adaptive filter (ADF) can mitigate these effects, it suffers from an overwhelming computational complexity. Recent solutions have incorporated deep neural networks in a data-driven strategy to alleviate this complexity in the DBP model. However, these models are often limited to a specific symbol rate and channel number, necessitating retraining for different settings, their performance declines significantly under high-speed and high-power conditions. We introduce Meta-DSP, a novel data-driven nonlinear compensation model based on meta-learning that processes multi-modal data across diverse transmission rates, power levels, and channel numbers. This not only enhances signal quality but also substantially reduces the complexity of the nonlinear processing algorithm. Our model delivers a 0.7 dB increase in the Q-factor over Electronic Dispersion Compensation (EDC), and compared to DBP, it curtails computational complexity by a factor of ten while retaining comparable performance. From the perspective of the entire signal processing system, the core idea of Meta-DSP can be employed in any segment of the overall communication system to enhance the model's scalability and generalization performance. Our research substantiates Meta-DSP's proficiency in addressing the critical parameters defining optical communication networks
    • 

    corecore