92 research outputs found

    Transfer function characterization for HFCTs used in partial discharge detection

    Get PDF
    High frequency current transformers (HFCTs) are widely employed to detect partial discharge (PD) induced currents in high voltage equipment. This paper describes measurements of the wideband transfer functions of HFCTs so that their influence on the detected pulse shape in advanced PD measurement applications can be characterized. The time-domain method based on the pulse response is a useful way to represent HFCT transfer functions as it allows numerical determination of the forward and reverse transfer functions of the sensor. However, while the method is accurate at high frequencies it can have limited resolution at low frequencies. In this paper, a composite time-domain method is presented to allow accurate characterization of the HFCT transfer functions at both low and high frequencies. The composite method was tested on two different HFCTs and the results indicate that the method can characterize their transfer functions ranging from several kHz to tens of MHz. Results are found to be in good agreement with frequency-domain measurements up to 50 MHz. Measurement procedures for using the method are summarized to facilitate further applications

    Chemical, Thermal, Time, and Enzymatic Stability of Silk Materials with Silk I Structure

    Get PDF
    The crystalline structure of silk fibroin Silk I is generally considered to be a metastable structure; however, there is no definite conclusion under what circumstances this crystalline structure is stable or the crystal form will change. In this study, silk fibroin solution was prepared from B. Mori silkworm cocoons, and a combined method of freeze-crystallization and freeze-drying at different temperatures was used to obtain stable Silk I crystalline material and uncrystallized silk material, respectively. Different concentrations of methanol and ethanol were used to soak the two materials with different time periods to investigate the effect of immersion treatments on the crystalline structure of silk fibroin materials. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman scattering spectroscopy (Raman), Scanning electron microscope (SEM), and Thermogravimetric analysis (TGA) were used to characterize the structure of silk fibroin before and after the treatments. The results showed that, after immersion treatments, uncrystallized silk fibroin material with random coil structure was transformed into Silk II crystal structure, while the silk material with dominated Silk I crystal structure showed good long-term stability without obvious transition to Silk II crystal structure. α-chymotrypsin biodegradation study showed that the crystalline structure of silk fibroin Silk I materials is enzymatically degradable with a much lower rate compared to uncrystallized silk materials. The crystalline structure of Silk I materials demonstrate a good long-term stability, endurance to alcohol sterilization without structural changes, and can be applied to many emerging fields, such as biomedical materials, sustainable materials, and biosensors

    Soliton Molecules and Multisoliton States in Ultrafast Fibre Lasers: Intrinsic Complexes in Dissipative Systems

    Get PDF
    Benefiting from ultrafast temporal resolution, broadband spectral bandwidth, as well as high peak power, passively mode-locked fibre lasers have attracted growing interest and exhibited great potential from fundamental sciences to industrial and military applications. As a nonlinear system containing complex interactions from gain, loss, nonlinearity, dispersion, etc., ultrafast fibre lasers deliver not only conventional single soliton but also soliton bunching with different types. In analogy to molecules consisting of several atoms in chemistry, soliton molecules (in other words, bound solitons) in fibre lasers are of vital importance for in-depth understanding of the nonlinear interaction mechanism and further exploration for high-capacity fibre-optic communications. In this Review, we summarize the state-of-the-art advances on soliton molecules in ultrafast fibre lasers. A variety of soliton molecules with different numbers of soliton, phase-differences and pulse separations were experimentally observed owing to the flexibility of parameters such as mode-locking techniques and dispersion control. Numerical simulations clearly unravel how different nonlinear interactions contribute to formation of soliton molecules. Analysis of the stability and the underlying physical mechanisms of bound solitons bring important insights to this field. For a complete view of nonlinear optical phenomena in fibre lasers, other dissipative states such as vibrating soliton pairs, soliton rains, rogue waves and coexisting dissipative solitons are also discussed. With development of advanced real-time detection techniques, the internal motion of different pulsing states is anticipated to be characterized, rendering fibre lasers a versatile platform for nonlinear complex dynamics and various practical applications

    60-nm-span wavelength-tunable vortex fiber laser with intracavity plasmon metasurfaces

    Full text link
    Wavelength-tunable vortex fiber lasers that could generate beams carrying orbital angular momentum (OAM) hold great interest in large-capacity optical communications. The wavelength tunability of conventional vortex fiber lasers is however limited by the range of 35 nm due to narrow bandwidth and/or insertion loss of mode conversion components. Optical metasurfaces apart from being compact planar components can flexibly manipulate light with high efficiency in a broad wavelength range. Here, we propose and demonstrate for the first time, to the best of our knowledge, a metasurface-assisted vortex fiber laser that can directly generate OAM beams with changeable topological charges. Due to the designed broadband gap-surface plasmon metasurface, combined with an intracavity tunable filter, the laser enables OAM beam with center wavelength continuously tunable from 1015 nm to 1075 nm, nearly twice of other vortex fiber lasers ever reported. The metasurface can be designed at will to satisfy requirements for either low pump threshold or high slope efficiency of the laser. Furthermore, the cavity-metasurface configuration can be extended to generate higher-order OAM beams or more complex structured beams in different wavelength regions, which greatly broadens the possibilities for developing low-cost and high-quality structured-beam laser sources

    A novel wavelet selection scheme for partial discharge signal detection under low SNR condition

    Get PDF
    Wavelet-based techniques have been widely used to extract partial discharge (PD) signals from noisy signals. Generally, the procedure consists of 3 steps: wavelet selection, decomposition scale determination, and noise estimation. Wavelet selection is the first and most important step for its successful application in PD denoising. However, despite many variants of techniques deployed, the success rate is not generally good especially when the signal to noise ratio is unity or less. This paper discusses a novel technique that addresses this issue. The technique is inspired by the concept of Shannon entropy and the associated information cost functions (ICF) in information theory. It is adaptive to the detected PD signals. The paper demonstrates that the proposed technique is effective when applied to PD signals obtained through laboratory experiments and on-site measurements. When this technique is applied to cable diagnostics, it should have the potential to extend the range of PD detection from cables

    Soliton Molecules and Multisoliton States in Ultrafast Fibre Lasers: Intrinsic Complexes in Dissipative Systems

    Get PDF
    Benefiting from ultrafast temporal resolution, broadband spectral bandwidth, as well as high peak power, passively mode-locked fibre lasers have attracted growing interest and exhibited great potential from fundamental sciences to industrial and military applications. As a nonlinear system containing complex interactions from gain, loss, nonlinearity, dispersion, etc., ultrafast fibre lasers deliver not only conventional single soliton but also soliton bunching with different types. In analogy to molecules consisting of several atoms in chemistry, soliton molecules (in other words, bound solitons) in fibre lasers are of vital importance for in-depth understanding of the nonlinear interaction mechanism and further exploration for high-capacity fibre-optic communications. In this Review, we summarize the state-of-the-art advances on soliton molecules in ultrafast fibre lasers. A variety of soliton molecules with different numbers of soliton, phase-differences and pulse separations were experimentally observed owing to the flexibility of parameters such as mode-locking techniques and dispersion control. Numerical simulations clearly unravel how different nonlinear interactions contribute to formation of soliton molecules. Analysis of the stability and the underlying physical mechanisms of bound solitons bring important insights to this field. For a complete view of nonlinear optical phenomena in fibre lasers, other dissipative states such as vibrating soliton pairs, soliton rains, rogue waves and coexisting dissipative solitons are also discussed. With development of advanced real-time detection techniques, the internal motion of different pulsing states is anticipated to be characterized, rendering fibre lasers a versatile platform for nonlinear complex dynamics and various practical applications

    Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    Get PDF
    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated

    The FOXK1-CCDC43 Axis Promotes the Invasion and Metastasis of Colorectal Cancer Cells

    Get PDF
    Background/Aims: The CCDC43 gene is conserved in human, rhesus monkey, mouse and zebrafish. Bioinformatics studies have demonstrated the abnormal expression of CCDC43 gene in colorectal cancer (CRC). However, the role and molecular mechanism of CCDC43 in CRC remain unknown. Methods: The functional role of CCDC43 and FOXK1 in epithelial-mesenchymal transition (EMT) was determined using immunohistochemistry, flow cytometry, western blot, EdU incorporation, luciferase, chromatin Immunoprecipitation (ChIP) and cell invasion assays. Results: The CCDC43 gene was overexpressed in human CRC. High expression of CCDC43 protein was associated with tumor progression and poor prognosis in patients with CRC. Moreover, the induction of EMT by CCDC43 occurred through TGF-β signaling. Furthermore, a positive correlation between the expression patterns of CCDC43 and FOXK1 was observed in CRC cells. Promoter assays demonstrated that FOXK1 directly bound and activated the human CCDC43 gene promoter. In addition, CCDC43 was necessary for FOXK1- mediated EMT and metastasis in vitro and vivo. Taken together, this work identified that CCDC43 promoted EMT and was a direct transcriptional target of FOXK1 in CRC cells. Conclusion: FOXK1-CCDC43 axis might be helpful to develop the drugs for the treatment of CRC
    corecore