129 research outputs found

    Impacts of snow accumulation on air temperature measured by automatic weather stations on the Antarctic ice sheet

    Get PDF
    The heights of automatic weather station (AWS) sensors over the Antarctic ice sheet are nominal and change with snow accumulation or ablation. Therefore, the measured data may not be used directly. In this study, we analyzed the impact of snow accumulation on AWS observations using continuous measurements from three AWS that were deployed on the traverse route from the Zhongshan Station to Dome A over East Antarctica. We then corrected the measured air temperature to account for changes in the sensor height relative to the snow surface to improve the authenticity and representativeness of the observation data from the AWS. The results show that (i) the annual mean snow accumulations at Dome A, Eagle and LGB69 were approximately 0.11 m, 0.30 m and 0.49 m, respectively, and the corresponding annual mean air temperature differences between the corrected and measured values at 1 m in height were 0.34℃, 0.29℃ and 0.35℃; (ii) the impact on air temperature from accumulation decreases with height from the surface; (iii) the air temperature difference between the corrected and measured values was not directly proportional to the snow accumulation but was related to the seasonal air temperature variations and the intensity of the local surface inversion; and (iv) the averaged corrected air temperature was higher than the measured values except during the summer when there were days without temperature inversion. The magnitude of the temperature difference between the corrected and measured was mainly determined by snow accumulation and the intensity of the local surface inversion

    More Frequent, Intense, and Extensive Rainfall Events in a Strongly Warming Arctic

    Get PDF
    The changes in the Arctic precipitation profoundly impact the surface mass balance of ice sheet and sea ice, the extent of snow cover, as well as the land/ice surface runoff in the Arctic, particularly when it occurs in liquid form. Here, we use state-of-the-art models from the Coupled Model Intercomparison Project Phase 5 to project the number of days with rainfall, the intensities and onset dates of rainfall events in the Arctic under the strong emission scenario (RCP8.5). The multi-model mean shows that rainfall will occur more frequently in the Arctic at the end of this century (2091-2100), with larger increase in the rainy days over the Pacific and Atlantic sectors (up to 12 days/month) during the cold seasons (October-May) and over the Arctic Ocean (up to 14 days/month) during the warm seasons (June-September) as compared with the present day (2006-2015). Greater uncertainty is found in the cold seasons, which mainly comes from the high variability among different models in the Norwegian Sea. Sixty-seven to ninety-three percentage of the increases in rainy days is contributed by the local warming and the remainder by the increase in total precipitation. Moreover, at the end of this century, the rainfall in spring will occur much earlier than the present day by more than 1 month, and the extent of rainfall will further expand toward the center of the Arctic Ocean and the inland Greenland in the future. The changes of rainfall intensity on the Arctic land area to the climate warming are more sensitive than that on the Arctic Ocean in warm seasons (May-September). The rainfall will be further strengthened in most of the Arctic continents in summer, with the largest increase in the intensity of similar to 2 mm/day along the southwest coast of Greenland. The above results are confirmed by the latest projections from CMIP6 models

    The Weddell Sea Region: An Important Precipitation Channel to the Interior of the Antarctic Ice Sheet as Revealed by Glaciochemical Investigation of Surface Snow Along the Longest Trans-Antarctic Route

    Get PDF
    Glaciochemical analysis of surface snow samples, collected along a profile crossing the Antarctic ice sheet from the Larsen Ice Shelf, Antarctic Peninsula, via the Antarctic Plateau through South Pole, Vostok and Komsomolskaya to Mirny station (at the east margin of East Antarctica), shows that the Weddell Sea region is an important channel for air masses to the high plateau of the Antarctic ice sheet (\u3e2000 m a.s.l.). This opinion is supported by the following. (1) The fluxes of sea-salt ions such as Na+, Mg2+ and Cl− display a decreasing trend from the west to the east of interior Antarctica. In general, as sea-salt aerosols are injected into the atmosphere over the Antarctic ice sheet from the Weddell Sea, large aerosols tend to decrease. For the inland plateau, few large particles of sea-salt aerosol reach the area, and the sea-salt concentration levels are low. (2) The high altitude of the East Antarctic plateau, as well as the polar cold high-pressure system, obstruct the intrusive air masses mainly from the South Indian Ocean sector. (3) For the coastal regions of the East Antarctic ice sheet, the elevation rises to 2000 m over a distance from several to several tens of km. High concentrations of sea salt exist in snow in East Antarctica but are limited to a narrow coastal zone. (4) Fluxes of calcium and non-sea-salt sulfate in snow from the interior plateau do not display an eastward-decreasing trend. Since calcium is mainly derived from crustal sources, and nssSO42− is a secondary aerosol, this again confirms that the eastward-declining tendency of sea-salt ions indicates the transfer direction of precipitation vapor

    Sea Level Pressure Variability Over the Southern Indian Ocean Inferred from a Glaciochemical Record in Princess Elizabeth Land, East Antarctica

    Get PDF
    A 250-year, high-resolution, multivariate ice core record from LGB65 (70degrees50\u2707 S, 77degrees04\u2729 E; 1850 m asl), Princess Elizabeth Land (PEL), is used to investigate sea level pressure (SLP) variability over the southern Indian Ocean (SIO). Empirical orthogonal function (EOF) analysis reveals that the first EOF (EOF1) of the glaciochemical record from LGB65 represents most of the variability in sea salt throughout the 250-year record. EOF1 is negatively correlated (95% confidence level and higher) to instrumental mean sea level pressure (MSLP) at Kerguelen and New Amsterdam islands, SIO. On the basis of comparison with NCEP/NCAR reanalysis, strong correlations were found between sea-salt variations and a quasi-stationary low that lies to the north of Prydz Bay, SIO. Comparison with a 250-year-long summer transpolar index (STPI) inferred from sub-Antarctic tree ring records reveals strong coherency. Decadal-scale SLP variability over SIO suggests shifting of the polar vortex. Prominent decadal-scale deepening of the southern Indian Ocean low (SIOL) exists circa 1790, 1810, 1835, 1860, 1880, 1900, and 1940 A. D., continuously after the 1970s, and prominent weakening circa 1750, 1795, 1825, 1850, 1870, 1890, 1910, and 1955 A. D. The LGB65 sea-salt record is characterized by significant decadal-scale variability with a strong similar to21-year periodic structure (99.9% confidence level). The relationship between LGB65 sea salt and solar irradiance changes shows that this periodicity is possibly the solar Hale cycle ( 22 years)

    Climatological Significance of δ\u3csup\u3e18\u3c/sup\u3eO in Precipitation and Ice Cores: a Case Study at the Head of the Ürütnqi River, Tien Shan, China

    Get PDF
    Stable-oxygen-isotope ratios (δ18O) collected from the headwaters of the Ürümqi river, Tien Shan, China, were used to test the relationship between δ18O temporal relationship is found between δ18O monthly averages which remove synoptic-scale influences such as changes in condensation level, condensation temperature and moisture sources (Yao and others, 1996). Linear fits as high as 0.95‰°C-1 for precipitation events and 1.23‰°C-1 for monthly averages are found. Although the δ18O (∼2 km from the precipitation sampling site) decreased dramatically compared to the precipitation samples , the ice-core records of annually averaged δ18O with contemporaneous air temperature, especially summer air temperature, at the nearby Daxigou meteorological station. Nevertheless, the relationship between the ice core δ18O records and contemporaneous air temperature is less significant than that [or the precipitation samples due to depositional and post-depositional modification processes, which are highlighted by the successive snow-pit δ18O No. 1. Our results might extend the application of high-altitude and subtropical ice-core δ18

    Climate and meteorological processes of the East Antarctic ice sheet between Zhongshan and Dome-A

    Get PDF
    The 1228 km over-snow traverse route between the Chinese Zhongshan Station, on the coast of Prydz Bay, and Dome-A, at 4091 m elevation the highest point of the East Antarctic ice sheet, has been the focus of CHINARE surface meteorological and climate studies since 2002. A network of seven Automatic Weather Stations has been deployed along this section, including at Dome-A itself, and some of these have now provided nearly-hourly data for over a decade. Atmospheric boundary layer turbulence and radiation observations have been made over the near-coastal ice sheet inland of Zhongshan and surface turbulence measurements using an ultrasonic anemometer system have also been made in the deep interior of the ice sheet. Summer GPS radiosonde soundings of the atmospheric boundary layer have been made at Kunlun Station, near Dome-A. In this paper these observations are combined to provide a comprehensive overview of the meteorological regime of this region of the ice sheet, its climate variability, and as a reference for future study of climate change. This includes investigation of the variation of surface climate features with elevation and distance from the coast, the height and structure of the boundary layer over the ice sheet, and seasonal and regional changes in ice/snow–air interactions, including turbulent and radiative energy fluxes. The air temperature and snow temperature between the coastal Zhongshan and Dome-A on the inland plateau have not changed significantly in the past decade compared with the inter-annual variability

    An observational study of precipitation types in the Alaskan Arctic

    Get PDF
    The effects of various precipitation types, such as snow, rain, sleet, hail and freezing rain, on regional hydrology, ecology, snow and ice surfaces differ significantly. Due to limited observations, however, few studies into precipitation types have been conducted in the Arctic. Based on the high-resolution precipitation records from an OTT Parsivel2 disdrometer in Utqiaġvik, Alaska, this study analysed variations in precipitation types in the Alaskan Arctic from 15 May to 16 October, 2019. Results show that rain and snow were the dominant precipitation types during the measurement period, accounting for 92% of the total precipitation. In addition, freezing rain, sleet, and hail were also observed (2, 4 and 11 times, respectively), accounting for the rest part of the total precipitation. The records from a neighbouring U.S. Climate Reference Network (USCRN) station equipped with T-200B rain gauges support the results of disdrometer. Further analysis revealed that Global Precipitation Measurement (GPM) satellite data could well characterise the observed precipitation changes in Utqiaġvik. Combined with satellite data and station observations, the spatiotemporal variations in precipitation were verified in various reanalysis datasets, and the results indicated that ECMWF Reanalysis v5 (ERA5) could better describe the observed precipitation time series in Utqiaġvik and the spatial distribution of data in the Alaskan Arctic. Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) overestimated the amount and frequency of precipitation. Japanese 55-year Reanalysis (JRA-55) could better simulate heavy precipitation events and the spatial distribution of the precipitation phase, but it overestimated summer snowfall

    Seasonal variation of atmospheric elemental carbon aerosols at Zhongshan Station, East Antarctica

    Get PDF
    Elemental carbon (or black carbon) (EC or BC) aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing. Southern Hemisphere biomass burning emissions have contributed substantially to EC deposition in Antarctica. Here, we present the seasonal variation of EC determined from aerosol samples acquired at Zhongshan Station (ZSS), East Antarctica. The concentration of EC in the atmosphere varied between 0.02 and 257.81 ng·m−3 with a mean value of 44.87±48.92 ng·m−3. The concentration of EC aerosols reached its peak in winter (59.04 ng·m−3) and was lowest (27.26 ng·m−3) in summer. Back trajectory analysis showed that biomass burning in southern South America was the major source of the EC found at ZSS, although some of it was derived from southern Australia, especially during winter. The 2019–2020 Australian bush fires had some influence on EC deposition at ZSS, especially during 2019, but the contribution diminished in 2020, leaving southern South America as the dominant source of EC
    • …
    corecore