7 research outputs found

    Forsythiae Fructus: A Review on its Phytochemistry, Quality Control, Pharmacology and Pharmacokinetics

    No full text
    Forsythiae Fructus, as a traditional Chinese medicine, has been widely used both as a single herb and in compound prescriptions in Asia, mainly due to its heat-clearing and detoxifying effects. Modern pharmacology has proved Forsythiae Fructus possesses various therapeutic effects, both in vitro and in vivo, such as anti-inflammatory, antibacterial and antiviral activities. Up to now, three hundred and twenty-one compounds have been identified and sensitive analytical methods have been established for its quality control. Recently, the pharmacokinetics of Forsythiae Fructus and its bioactive compounds have been reported, providing valuable information for its clinical application. Therefore, this systematic review focused on the newest scientific reports on Forsythiae Fructus and extensively summarizes its phytochemistry, pharmacology, pharmacokinetics and standardization procedures, especially the difference between the two applied types—unripe Forsythiae Fructus and ripe Forsythiae Fructus—in the hope of providing a helpful reference and guide for its clinical applications and further studies

    Asperuloside and Asperulosidic Acid Exert an Anti-Inflammatory Effect via Suppression of the NF-ÎșB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages

    No full text
    Hedyotis diffusa is a folk herb that is used for treating inflammation-related diseases in Asia. Previous studies have found that iridoids in H. diffusa play an important role in its anti-inflammatory activity. This study aimed to investigate the anti-inflammatory effect and potential mechanism of five iridoids (asperuloside (ASP), asperulosidic acid (ASPA), desacetyl asperulosidic acid (DAA), scandoside methyl ester (SME), and E-6-O-p-coumaroyl scandoside methyl ester (CSME)) that are presented in H. diffusa using lipopolysaccharide (LPS)—induced RAW 264.7 cells. ASP and ASPA significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in parallel with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 mRNA expression in LPS-induced RAW 264.7 cells. ASP treatment suppressed the phosphorylation of the inhibitors of nuclear factor-kappaB alpha (IκB-α), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). The inhibitory effect of ASPA was similar to that of ASP, except for p38 phosphorylation. In summary, the anti-inflammatory effects of ASP and ASPA are related to the inhibition of inflammatory cytokines and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, which provides scientific evidence for the potential application of H. diffusa

    Perovskite Single Crystals by Vacuum Evaporation Crystallization

    No full text
    Abstract Perovskite single crystals have attracted tremendous attention owing to their excellent optoelectronic properties and stability compared to typical multicrystal structures. However, the growth of high‐quality perovskite single crystals (PSCs) generally relies on temperature gradients or the introduction of additives to promote crystal growth. In this study, a vacuum evaporation crystallization technique is developed that allows PSCs to be grown under extremely stable conditions at constant temperature and without requiring additives to promote crystal growth. The new method enables the growth of PSCs of unprecedented quality, that is, MAPbBr3 single crystals that exhibit an ultranarrow full width at half maximum of 0.00701°, which surpasses that of all previously reported values. In addition, the MAPbBr3 single crystals deliver exceptional optoelectronic performance, including a long carrier lifetime of 1006 ns, an ultralow trap‐state density of 3.67 × 109 cm−3, and an ultrahigh carrier mobility of 185.86 cm2 V−1 s−1. This method is applicable to various types of PSCs, including organic–inorganic hybrids, fully inorganic structures, and low‐dimensional structures
    corecore