48 research outputs found

    PharmacyGPT: The AI Pharmacist

    Full text link
    In this study, we introduce PharmacyGPT, a novel framework to assess the capabilities of large language models (LLMs) such as ChatGPT and GPT-4 in emulating the role of clinical pharmacists. Our methodology encompasses the utilization of LLMs to generate comprehensible patient clusters, formulate medication plans, and forecast patient outcomes. We conduct our investigation using real data acquired from the intensive care unit (ICU) at the University of North Carolina Chapel Hill (UNC) Hospital. Our analysis offers valuable insights into the potential applications and limitations of LLMs in the field of clinical pharmacy, with implications for both patient care and the development of future AI-driven healthcare solutions. By evaluating the performance of PharmacyGPT, we aim to contribute to the ongoing discourse surrounding the integration of artificial intelligence in healthcare settings, ultimately promoting the responsible and efficacious use of such technologies

    Assessing Large Language Models in Mechanical Engineering Education: A Study on Mechanics-Focused Conceptual Understanding

    Full text link
    This study is a pioneering endeavor to investigate the capabilities of Large Language Models (LLMs) in addressing conceptual questions within the domain of mechanical engineering with a focus on mechanics. Our examination involves a manually crafted exam encompassing 126 multiple-choice questions, spanning various aspects of mechanics courses, including Fluid Mechanics, Mechanical Vibration, Engineering Statics and Dynamics, Mechanics of Materials, Theory of Elasticity, and Continuum Mechanics. Three LLMs, including ChatGPT (GPT-3.5), ChatGPT (GPT-4), and Claude (Claude-2.1), were subjected to evaluation against engineering faculties and students with or without mechanical engineering background. The findings reveal GPT-4's superior performance over the other two LLMs and human cohorts in answering questions across various mechanics topics, except for Continuum Mechanics. This signals the potential future improvements for GPT models in handling symbolic calculations and tensor analyses. The performances of LLMs were all significantly improved with explanations prompted prior to direct responses, underscoring the crucial role of prompt engineering. Interestingly, GPT-3.5 demonstrates improved performance with prompts covering a broader domain, while GPT-4 excels with prompts focusing on specific subjects. Finally, GPT-4 exhibits notable advancements in mitigating input bias, as evidenced by guessing preferences for humans. This study unveils the substantial potential of LLMs as highly knowledgeable assistants in both mechanical pedagogy and scientific research.Comment: 30 pages, 7 figures, and 1 tabl

    Mobile Guardian: A Novel Positioning and Monitoring System for Outdoor Special Users Based on GPS

    Get PDF
    Different to traditional vehicle positioning and navigation systems, requirements of positioning operations for individuals are always contingently, and it pays more attention to making navigation devices portable and easy to use. Bayed on GPS and GSM, a novel positioning and monitoring system for outdoor special users called Mobile Guardian is presented in this paper. Through analyzing the structure of GPS data, location-related information such as longitude and latitude of users can be extracted from GPS data stream. The GSM module which supported AT commands, is used to transmit these location data and telecommands between users and the monitoring center. And the technology for encapsulating and parsing XML spacial data is utilized fir Google Earth to display the detailed geographical information on the screen. Experiments show that the system is effective and could be popularized to family monitoring

    Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation

    Get PDF
    Pore parameters, structural stability, and filler morphology of artificial implants are key factors influencing the process of bone tissue repair. However, the extent to which each of these factors contributes to bone formation in the preparation of porous bioceramics is currently unclear, with the two often being coupled. Herein, we prepared magnesium-doped wollastonite (Mg-CSi) scaffolds with 57% and 70% porosity (57-S and 70-S) via a 3D printing technique. Meanwhile, the bioceramic granules (57-G and 70-G) with curved pore topography (IWP) were prepared by physically disrupting the 57-S and 70-S scaffolds, respectively, and compared for in vivo osteogenesis at 4, 10, and 16 weeks. The pore parameters and the mechanical and biodegradable properties of different porous bioceramics were characterized systematically. The four groups of porous scaffolds and granules were then implanted into a rabbit femoral defect model to evaluate the osteogenic behavior in vivo. 2D/3D reconstruction and histological analysis showed that significant bone tissue production was visible in the central zone of porous granule groups at the early stage but bone tissue ingrowth was slower in the porous scaffold groups. The bone tissue regeneration and reconstruction capacity were stronger after 10 weeks, and the porous architecture of the 57-S scaffold was maintained stably at 16 weeks. These experimental results demonstrated that the structure-collapsed porous bioceramic is favorable for early-stage osteoconduction and that the 3D topological scaffolds may provide more structural stability for bone tissue growth for a long-term stage. These findings provide new ideas for the selection of different types of porous bioceramics for clinical bone repair

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Simulation and Analysis for Electric Bicycle Traffic Flow

    No full text
    Keywords: traffic engineering, electric bicycle flow, lane changing rule, cellular automaton model. Abstract. The electric bicycle has become the main part of non motor vehicles in small and medium-sized cities. Research on the traffic flow characteristic of the electric bicycle has important practical significance. Based on NaSch model, this paper models electric bicycle traffic flow with CA model and improves the lane changing model. Then the electric bicycle lanes change into general lane change and whistle change, and corresponding lane changing rules are set up. Simulation analysis of the model is carried out. The results show that when the traffic density is small, whistling behavior to raise the road utilization rate has some effect, but in the high density, whistle behavior can not improve road traffic capacity

    Multi-Agent Based Microscopic Simulation Modeling for Urban Traffic Flow

    No full text
    Traffic simulation plays an important role in the evaluation of traffic decisions. The movement of vehicles essentially is the operating process of drivers, in order to reproduce the urban traffic flow from the micro-aspect on computer, this paper establishes an urban traffic flow microscopic simulation system (UTFSim) based on multi-agent. The system is seen as an intelligent virtual environment system (IVES), and the four-layer structure of it is built. The road agent, vehicle agent and signal agent are modeled. The concept of driving trajectory which is divided into LDT (Lane Driving Trajectory) and VDDT (Vehicle Dynamic Driving Trajectory) is introduced. The “Link-Node” road network model is improved. The driving behaviors including free driving, following driving, lane changing, slowing down, vehicle stop, etc. are analyzed. The results of the signal control experiments utilizing the UTFSim developed in the platform of Visual Studio. NET indicates that it plays a good performance and can be used in the evaluation of traffic management and control
    corecore