266 research outputs found

    Does carbon dioxide pneumoperitoneum enhance wound metastases following laparoscopic abdominal tumor surgery? A meta-analysis of 20 randomized control studies

    Get PDF
    The mechanisms involved in the development of wound metastasis following laparoscopic abdominal tumor surgery remain unclear. The aim of this study was to accurately assess whether the duration of carbon dioxide pneumoperitoneum (CDP) during laparoscopic abdominal tumor surgery enhances wound metastases. We conducted a systematic review of PubMed, Cochrane Library, and Embase through December 2013 to identify animal experiments comparing wound recurrence between laparoscopic and gasless laparoscopic procedures or open procedures. The outcome of interest was the number of animals with a wound tumor. Meta-regression was used to assess whether heterogeneity was explained by study level covariates (animal model, study size, CDP pressure, duration, and evaluated time). Twenty randomized control studies involving 1,229 animals were included. Wound recurrence was not significant in the laparoscopic surgery (LP) vs. gasless laparoscopic surgery (GLP) subgroups [odds ratio (OR), 2.23; 95 % confidence interval (CI), 0.90–5.55; P = 0.08) or the LP vs. laparotomy (LA) subgroups (OR, 0.97; 95 % CI, 0.31–3.00; P = 0.08). Overall postoperative wound recurrence results were not significantly different between the study groups and controls (OR, 1.47; 95 % CI, 0.74–2.92; P = 0.28). A meta-regression analysis showed that the outcome was not correlated with the covariates (animal model: P = 0.82; evaluated time: P = 0.30; pressure of CDP: P = 0.12; duration time: P = 0.80). Current evidence suggests that CDP does not enhance wound metastases following laparoscopic abdominal tumor surgery. Additional large sample, well-designed, randomized, controlled trials are needed to further confirm whether CDP duration in laparoscopic abdominal tumor surgery significantly enhances wound recurrence

    Sample Selected Extreme Learning Machine Based Intrusion Detection in Fog Computing and MEC

    Get PDF
    Fog computing, as a new paradigm, has many characteristics that are different from cloud computing. Due to the resources being limited, fog nodes/MEC hosts are vulnerable to cyberattacks. Lightweight intrusion detection system (IDS) is a key technique to solve the problem. Because extreme learning machine (ELM) has the characteristics of fast training speed and good generalization ability, we present a new lightweight IDS called sample selected extreme learning machine (SS-ELM). The reason why we propose “sample selected extreme learning machine” is that fog nodes/MEC hosts do not have the ability to store extremely large amounts of training data sets. Accordingly, they are stored, computed, and sampled by the cloud servers. Then, the selected sample is given to the fog nodes/MEC hosts for training. This design can bring down the training time and increase the detection accuracy. Experimental simulation verifies that SS-ELM performs well in intrusion detection in terms of accuracy, training time, and the receiver operating characteristic (ROC) value

    Epidemic clones, oceanic gene pools and eco-LD in the free living marine pathogen Vibrio parahaemolyticus

    Full text link
    We investigated global patterns of variation in 157 whole genome sequences of Vibrio parahaemolyticus, a free-living and seafood associated marine bacterium. Pandemic clones, responsible for recent outbreaks of gastroenteritis in humans have spread globally. However, there are oceanic gene pools, one located in the oceans surrounding Asia and another in the Mexican Gulf. Frequent recombination means that most isolates have acquired the genetic profile of their current location. We investigated the genetic structure in the Asian gene pool by calculating the effective population size in two different ways. Under standard neutral models, the two estimates should give similar answers but we found a thirty fold difference. We propose that this discrepancy is caused by the subdivision of the species into a hundred or more ecotypes which are maintained stably in the population. To investigate the genetic factors involved, we used 51 unrelated isolates to conduct a genome-wide scan for epistatically interacting loci. We found a single example of strong epistasis between distant genome regions. A majority of strains had a type VI secretion system associated with bacterial killing. The remaining strains had genes associated with biofilm formation and regulated by c-di-GMP signaling. All strains had one or other of the two systems and none of isolate had complete complements of both systems, although several strains had remnants. Further top-down analysis of patterns of linkage disequilibrium within frequently recombining species will allow a detailed understanding of how selection acts to structure the pattern of variation within natural bacterial populations

    A Novel Cost Optimization Strategy for SDN-Enabled UAV-Assisted Vehicular Computation Offloading

    Get PDF
    Vehicular computation offloading is a well-received strategy to execute delay-sensitive and/or compute-intensive tasks of legacy vehicles. The response time of vehicular computation offloading can be shortened by using mobile edge computing that offers strong computing power, driving these computation tasks closer to end users. However, the quality of communication is hard to guarantee due to the obstruction of dense buildings or lack of infrastructure in some zones. Unmanned Aerial Vehicles (UAVs), therefore, have become one of the means to establish communication links for the two ends owing to its characteristics of ignoring terrain and flexible deployment. To make a sensible decision of computation offloading, nevertheless vehicles need to gather offloading-related global information, in which Software-Defined Networking (SDN) has shown its advances in data collection and centralized management. In this paper, thus, we propose an SDN-enabled UAV-assisted vehicular computation offloading optimization framework to minimize the system cost of vehicle computing tasks. In our framework, the UAV and the Mobile Edge Computing (MEC) server can work on behalf of the vehicle users to execute the delay-sensitive and compute-intensive tasks. The UAV, in a meanwhile, can also be deployed as a relay node to assist in forwarding computation tasks to the MEC server. We formulate the offloading decision-making problem as a multi-players computation offloading sequential game, and design the UAV-assisted Vehicular Computation Cost Optimization (UVCO) algorithm to solve this problem. Simulation results demonstrate that our proposed algorithm can make the offloading decision to minimize the Average System Cost (ASC)

    Open-source genomic analysis of Shiga-toxin–producing E. coli O104:H4

    Get PDF
    An outbreak caused by Shiga-toxin–producing Escherichia coli O104:H4 occurred in Germany in May and June of 2011, with more than 3000 persons infected. Here, we report a cluster of cases associated with a single family and describe an open-source genomic analysis of an isolate from one member of the family. This analysis involved the use of rapid, bench-top DNA sequencing technology, open-source data release, and prompt crowd-sourced analyses. In less than a week, these studies revealed that the outbreak strain belonged to an enteroaggregative E. coli lineage that had acquired genes for Shiga toxin 2 and for antibiotic resistance

    Comprehensive Control of Optical Polarization Anisotropy in Semiconducting Nanowires

    Full text link
    The demonstration of strong photoluminescence polarization anisotropy in semiconducting nanowires embodies both technological promise and scientific challenge. Here we present progress on both fronts through the study of the photoluminescence polarization anisotropy of randomly oriented nanowire ensembles in materials without/with crystalline anisotropy, small/wide bandgap, and both III-V/II-VI chemistry (InP/ZnO nanowires, respectively). Comprehensive control of the polarization anisotropy is realized by dielectric matching with conformally deposited Ta2O5 (dielectric ratios of 9.6:4.41 and 4.0:4.41 for InP and ZnO, respectively). After dielectric matching, the polarization anisotropy of the nanowire ensembles is reduced by 86% for InP:Ta2O5 and 84% for ZnO:Ta2O5
    corecore