46 research outputs found

    <em>Fusarium graminearum</em> Species Complex and Trichothecene Genotype

    Get PDF
    The fungal phytopathogen in Fusarium species can cause Fusarium head blight of wheat, barley, oats, and other small cereal grain crops worldwide. Most importantly, these fungi can produce different kinds of mycoxins, and they are harmful to humans and animal health. FAO reported that approximately 25% of the world’s grains were contaminated by mycotoxins annually. This chapter will focus on several topics as below: (1) composition of Fusarium graminearum species complex; (2) genotype determination of Fusarium graminearum species complex strains from different hosts and their population structure changes; (3) genetic approaches to genotype determination in type B-trichothecene producing Fusaria fungi; and (4) some newly identified trichothecene mycotoxins, their toxicity, and distribution of the producers

    Advances in the regulatory mechanisms of mTOR in necroptosis

    Get PDF
    The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis

    Compound Bieshe Kang’ai inhibits proliferation and induces apoptosis in HCT116 human colorectal cancer cells

    Get PDF
    Purpose: To study the effect of Compound Bieshe Kang’ai (CBK) on proliferation and apoptosis in colorectal cancer cells.Methods: HCT116 colorectal cancer cells and FHs 74 Int intestinal cells were treated with CBK, followed by determination of cell proliferation with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Caspase-9 and caspase-3 activities as well as protein expressions of Bcl-2 and BAX, and mRNA levels of caspase-9, caspase-3, Bcl-2 and BAX in HCT116 cells were evaluated, followed by examination of the morphological alterations of HCT116 cells with Hoechst 33342 staining.Results: CBK suppressed proliferation of HCT116 cells in a concentration- and time-dependent pattern, without cytotoxicity to FHs 74 Int cells. CBK also elevated caspase-9 and caspase-3 activities, mitigated protein translation of Bcl-2 and augmented that of BAX. It also enhanced mRNA transcriptions of caspase-9, caspase-3 and BAX, but decreased that of Bcl-2 in HCT116 cells in a  concentrationdependent manner, as well as induced cancer cell shrinkage, nuclear fragmentation and chromatin condensation.Conclusion: The findings highlight CBK as a promising therapeutic agent for colorectal cancers, by retarding proliferation and inducing apoptosis in cancer cells.Keywords: Apoptosis, BAX, Bcl-2, Cancer, Caspase, Compound Bieshe Kang’ai, Chromatin condensation, Nuclear fragmentatio

    The LncRNA signature associated with cuproptosis as a novel biomarker of prognosis in immunotherapy and drug screening for clear cell renal cell carcinoma

    Get PDF
    Cuproptosis is a new form of cell death, the second form of metal ion-induced cell death defined after ferroptosis. Recently, cuproptosis has been suggested to be associated with tumorigenesis. However, the relationship between cuproptosis and patient prognosis in clear cell renal cell carcinoma (ccRCC) in the context of immunotherapy remains unknown. The aim of this study was to investigate the correlation between cuproptosis-related long non-coding RNA (lncRNA) and ccRCC in terms of immunity as well as prognosis. Clinical information on lncRNAs associated with differences in cuproptosis genes in ccRCC and normal tissues was collected from The Cancer Genome Atlas (TCGA) dataset. Univariate Cox regression was used to screen lncRNAs. A total of 11 lncRNAs closely associated with cuproptosis were further screened and established using the least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression, and the samples were randomly divided into training and test groups. A risk prognostic model was constructed using the training group, and the model was validated using the test group. We investigated the predictive ability of the prognostic risk model in terms of clinical prognosis, tumor mutation, immune escape, immunotherapy, tumor microenvironment, immune infiltration levels, and tumor drug treatment of ccRCC. Using the median risk score, patients were divided into low and high-risk groups. Kaplan-Meier curves showed that the overall survival (OS) of patients in the high-risk group was significantly worse than low-risk group (p &lt; 0.001). Receiver operating characteristic (ROC) curves further validated the reliability of our model. The model consistently and accurately predicted prognosis at 1, 3, and 5 years, with an AUC above 0.7. Tumor cell genes generally precede morphological abnormalities; therefore, the model we constructed can effectively compensate for the traditional method of evaluating the prognosis of patients with renal cancer, and our model was also clinically meaningful in predicting ccRCC staging. In addition, lower model risk scores determined by mutational load indicated a good chance of survival. The high-risk group had greater recruitment of immune cells, while the anti-immune checkpoint immunotherapy was less efficacious overall than that of the low-risk group. Tumor and immune-related pathways were enriched, and anti-tumor agents were selected to improve the survival of ccRCC. This prognostic risk model is based on the levels of cuproptosis-associated lncRNAs and provides a new perspective in the clinical assessment and precise treatment of ccRCC

    Multi-functional groups decorated composite nanofiber separator with excellent chemical stability in ester-based electrolyte for enhancing the lithium-ion transport

    Get PDF
    As various heat-resistant polymer separators come out, although they possess better thermal stability and superior affinity to liquid electrolyte than commercial polyolefin separator, the porous structure and chemical stability of these novel separators should be paid more attention. In this work, we prepare a thin polyacrylonitrile/cellulose acetate (PAN/CA) composite nanofiber separator and discuss the importance of chemical stability in the ester-based electrolyte. The addition of CA decreases the PAN/CA fiber diameter from 310 nm to 210 nm. However, CA containing a lot of ester groups is easy to be dissolved by liquid electrolyte for the property of similarity and compatibility. Hence, the obtained PAN/CA composite nanofiber separator is treated via alkaline hydrolysis process, and some ester groups are transformed to be hydroxyl groups. Noteworthily, hydroxyl-rich PAN/CA composite nanofiber separator not only remains stable in electrolyte, but also possesses an improved lithium-ion transport property for reducing concentration polarization effect. As a result, the LiCoO2/Li half cells employing the hydroxyl-rich composite nanofiber separator exhibits better capacity retention (118.5 mAh g -1 after 300 cycles) and superior rate performance (143.1 mAh g -1 at 3C). Therefore, this multi-functional groups decorated composite nanofiber separator with excellent chemical stability is a candidate for next-generation lithium-based battery

    Substantial transition to clean household energy mix in rural China

    Get PDF
    The household energy mix has significant impacts on human health and climate, as it contributes greatly to many health- and climate-relevant air pollutants. Compared to the well-established urban energy statistical system, the rural household energy statistical system is incomplete and is often associated with high biases. Via a nationwide investigation, this study revealed high contributions to energy supply from coal and biomass fuels in the rural household energy sector, while electricity comprised ∼20%. Stacking (the use of multiple sources of energy) is significant, and the average number of energy types was 2.8 per household. Compared to 2012, the consumption of biomass and coals in 2017 decreased by 45% and 12%, respectively, while the gas consumption amount increased by 204%. Increased gas and decreased coal consumptions were mainly in cooking, while decreased biomass was in both cooking (41%) and heating (59%). The time-sharing fraction of electricity and gases (E&G) for daily cooking grew, reaching 69% in 2017, but for space heating, traditional solid fuels were still dominant, with the national average shared fraction of E&G being only 20%. The non-uniform spatial distribution and the non-linear increase in the fraction of E&G indicated challenges to achieving universal access to modern cooking energy by 2030, particularly in less-developed rural and mountainous areas. In some non-typical heating zones, the increased share of E&G for heating was significant and largely driven by income growth, but in typical heating zones, the time-sharing fraction was <5% and was not significantly increased, except in areas with policy intervention. The intervention policy not only led to dramatic increases in the clean energy fraction for heating but also accelerated the clean cooking transition. Higher income, higher education, younger age, less energy/stove stacking and smaller family size positively impacted the clean energy transition

    Association of Adiponectin SNP+45 and SNP+276 with Type 2 Diabetes in Han Chinese Populations: A Meta-Analysis of 26 Case-Control Studies

    Get PDF
    Recently, many studies have reported that the SNP+45(T>G) and SNP+276(G>T) polymorphisms in the adiponectin gene are associated with type 2 diabetes (T2DM) in the Chinese Han population. However, the previous studies yielded many conflicting results. Thus, a meta-analysis of the association of the adiponectin gene with T2DM in the Chinese Han population is required. In the current study, we first determined the distribution of the adiponectin SNP+276 polymorphism in T2DM and nondiabetes (NDM) control groups. Our results suggested that the genotype and allele frequencies for SNP+276 did not differ significantly between the T2DM and NDM groups. Then, a meta-analysis of 23 case-control studies of SNP+45, with a total of 4161 T2DM patients and 3709 controls, and 11 case-control studies of SNP+276, with 2533 T2DM patients and 2212 controls, was performed. All subjects were Han Chinese. The fixed-effects model and random-effects model were applied for dichotomous outcomes to combine the results of the included studies. The results revealed a trend towards an increased risk of T2DM for the SNP+45G allele as compared with the SNP+45T allele (OR = 1.34; 95% CI, 1.11–1.62; P<0.01) in the Chinese Han population. However, there was no association between SNP+276 and T2DM (OR = 0.90; 95% CI, 0.73–1.10; P = 0.31). The results of our association study showed there was no association between the adiponectin SNP+276 polymorphism and T2DM in the Yunnan Han population. The meta-analysis results suggested that the SNP+45G allele might be a susceptibility allele for T2DM in the Chinese Han population. However, we did not observe an association between SNP+276 and T2DM

    Crack Forms Sensitivity-Based Prediction on Subsurface Cracks Depth in Ultrasonic-Vibration-Assisted Grinding of Optical Glasses

    No full text
    Subsurface cracks in ultrasonic-vibration-assisted grinding (UVAG) of optical glasses often exhibit diverse forms and proportions. Due to the variety of loads involved in crack formation and propagation, the crack forms and propagation depths have different sensitivities to each process parameter. Predicting the maximum subsurface cracks depth (MSSCD) by considering the varying effects of process parameters plays a key role in implementing effective control of the UVAG process. In this work, the subsurface crack forms and their proportions are investigated by conducting 40 sets of UVAG experiments. The varying effects of the grinding and ultrasonic parameters on the crack form proportions are unveiled by using grey relational analysis. The weighted least square support vector machine (WLS-SVM) prediction model for the MSSCD was developed. Twelve sets of UVAG experiments were carried out to validate the proposed model. The results show that arc-shaped cracks and bifurcated cracks account for 72.5% of all cracks, while ultrasonic vibration amplitude influences most of the proportions of arc-shaped and bifurcated cracks. Compared to other widely used prediction methods, the maximum and average relative prediction errors of the proposed model are 10.54% and 5.59%, respectively, which proves the high prediction accuracy of the model
    corecore