8 research outputs found

    Enhanced Separation Performance of Polyamide Thin-Film Nanocomposite Membranes with Interlayer by Constructed Two-Dimensional Nanomaterials: A Critical Review

    No full text
    Thin-film composite (TFC) polyamide (PA) membrane has been widely applied in nanofiltration, reverse osmosis, and forward osmosis, including a PA rejection layer by interfacial polymerization on a porous support layer. However, the separation performance of TFC membrane is constrained by the trade-off relationship between permeability and selectivity. Although thin-film nanocomposite (TFN) membrane can enhance the permeability, due to the existence of functionalized nanoparticles in the PA rejection layer, the introduction of nanoparticles leads to the problems of the poor interface compatibility and the nanoparticles agglomeration. These issues often lead to the defect of PA rejection layers and reduction in selectivity. In this review, we summarize a new class of structures of TFN membranes with functionalized interlayers (TFNi), which promises to overcome the problems associated with TFN membranes. Recently, functionalized two-dimensional (2D) nanomaterials have received more attention in the assembly materials of membranes. The reported TFNi membranes with 2D interlayers exhibit the remarkable enhancement on the permeability, due to the shorter transport path by the “gutter mechanism” of 2D interlayers. Meanwhile, the functionalized 2D interlayers can affect the diffusion of two-phase monomers during the interfacial polymerization, resulting in the defect-free and highly crosslinked PA rejection layer. Thus, the 2D interlayers enabled TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. This paper provides a critical review on the emerging 2D nanomaterials as the functionalized interlayers of TFNi membranes. The characteristics, function, modification, and advantages of these 2D interlayers are summarized. Several perspectives are provided in terms of the critical challenges for 2D interlayers, managing the trade-off between permeability, selectivity, and cost. The future research directions of TFNi membranes with 2D interlayers are proposed

    Serum CCAT2 as a biomarker for adjuvant diagnosis and prognostic prediction of cervical cancer

    No full text
    Abstract Growing evidence indicates that lncRNA colon cancer-associated transcript 2 (CCAT2) is associated with cancers. However, the clinical value of CCAT2 in cervical cancer (CC) remains unclear. In this study, serum CCAT2 level was detected by real-time quantitative PCR (RT-qPCR). Carbohydrate antigen 125 (CA125) and squamous-cell carcinoma antigen (SCC) were detected by electrochemiluminescence. A receiver operating characteristic (ROC) curve was utilized to estimate the diagnostic efficiency of CCAT2. Kaplan-Meier survival analysis and univariable and multivariable analyses were performed to assess the prognostic value of CCAT2. The relative expression level of CCAT2 in primary CC patients was significantly higher than that in cervical intraepithelial neoplasias (CIN) patients and healthy controls (both P < 0.001). CCAT2 relative expression was positively correlated with tumor Federation of Gynecology and Obstetrics (FIGO) stage, SCC-Ag and lymph node metastasis (LNM) (all P < 0.05). CCAT2 expression in recurrent/metastatic CC was significantly higher compared with primary CC (P < 0.0001) or operated CC (P < 0.0001) and during follow-up, CCAT2 expression was increased before surgery and decreased significantly after surgery (P < 0.0001). Furthermore, the overall survival rate of CC patients with high CCAT2 expression group markedly decreased as compared with that of low CCAT2 expression group (P = 0.026). Univariate analyses indicated that CCAT2 was a poor prognostic factor associated with overall survival (OS). Our study indicates that CCAT2 may be valuable in complementary diagnosis and monitoring of progression and prognosis of CC patients. Combined detection of CCAT2, CA125 and SCC can greatly improve the diagnostic efficiency of primary CC
    corecore