15 research outputs found

    Lead-Time Trajectory of CA19-9 as an Anchor Marker for Pancreatic Cancer Early Detection

    Get PDF
    Background & Aims There is substantial interest in liquid biopsy approaches for cancer early detection among subjects at risk, using multi-marker panels. CA19-9 is an established circulating biomarker for pancreatic cancer; however, its relevance for pancreatic cancer early detection or for monitoring subjects at risk has not been established. Methods CA19-9 levels were assessed in blinded sera from 175 subjects collected up to 5 years before diagnosis of pancreatic cancer and from 875 matched controls from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. For comparison of performance, CA19-9 was assayed in blinded independent sets of samples collected at diagnosis from 129 subjects with resectable pancreatic cancer and 275 controls (100 healthy subjects; 50 with chronic pancreatitis; and 125 with noncancerous pancreatic cysts). The complementary value of 2 additional protein markers, TIMP1 and LRG1, was determined. Results In the PLCO cohort, levels of CA19-9 increased exponentially starting at 2 years before diagnosis with sensitivities reaching 60% at 99% specificity within 0 to 6 months before diagnosis for all cases and 50% at 99% specificity for cases diagnosed with early-stage disease. Performance was comparable for distinguishing newly diagnosed cases with resectable pancreatic cancer from healthy controls (64% sensitivity at 99% specificity). Comparison of resectable pancreatic cancer cases to subjects with chronic pancreatitis yielded 46% sensitivity at 99% specificity and for subjects with noncancerous cysts, 30% sensitivity at 99% specificity. For prediagnostic cases below cutoff value for CA19-9, the combination with LRG1 and TIMP1 yielded an increment of 13.2% in sensitivity at 99% specificity ( P = .031) in identifying cases diagnosed within 1 year of blood collection. Conclusion CA19-9 can serve as an anchor marker for pancreatic cancer early detection applications

    Investigating the Functional Role of Med5 and Cdk8 in Arabidopsis Mediator Complex

    No full text
    The Mediator (Med) complex comprises about 30 subunits and is a transcriptional coregulator in eukaryotic systems. The core Mediator complex, consisting of the head, middle and tail modules, functions as a bridge between transcription factors and basal transcription machinery, whereas the CDK8 kinase module can attenuate Mediator’s ability to function as either a coactivator or co-repressor. Many Arabidopsis Mediator subunit has been functionally characterized, which reveals critical roles of Mediator in many aspects of plant growth and development, responses to biotic and abiotic stimuli, and metabolic homeostasis. Traditional genetic and biochemical approaches laid the foundation for our understanding of Mediator function, but recent transcriptomic and metabolomic studies have provided deeper insights into how specific subunits cooperate in the regulation of plant metabolism. In Chapter 1, we highlight recent developments in the investigation of Mediator and plant metabolism, with emphasis on the large-scale biology studies of med mutants. We previously found that MED5, an Arabidopsis Mediator tail subunit, is required for maintaining phenylpropanoid homeostasis. A semi-dominant mutation (reduced epidermal fluorescence 4-3, ref4-3) that causes a single amino acid substitution in MED5b functions as a strong suppressor of the pathway, leading to decreased soluble phenylpropanoid accumulation, reduced lignin content and dwarfism. In contrast, loss of MED5a and MED5b (med5) results in increased levels of phenylpropanoids. In Chapter 2, we present our finding that ref4-3 requires CDK8, a Mediator kinase module subunit, to repress plant growth even though the repression of phenylpropanoid metabolism in ref4-3 is CDK8-independent. Transcriptome profiling revealed that salicylic acid (SA) biosynthesis genes are up-regulated in a CDK8-dependent manner in ref4- 3, resulting in hyper-accumulation of SA and up-regulation of SA response genes. Both growth repression and hyper-accumulation of SA in ref4-3 require CDK8 with intact kinase activity, but these SA phenotypes are not connected with dwarfing. In contrast, mRNA-sequencing (RNA-seq) analysis revealed the up-regulation of a DNA J protein-encoding gene in ref4-3, the elimination of which partially suppresses dwarfing. Together, our study reveals genetic interactions between Mediator tail and kinase module subunits and enhances our understanding of dwarfing in phenylpropanoid pathway mutants. In Chapter 3, we characterize other phenotypes of med5 and ref4-3, and find that in addition to the up-regulated phenylpropanoid metabolism, med5 show other interesting phenotypes including hypocotyl and petiole elongation as well as accelerated flowering, all of which are known collectively as the shade avoidance syndrome (SAS), suggesting that MED5 antagonize shade avoidance in wild-type plants. In contrast, the constitutive ref4-3 mutant protein inhibits the process, and the stunted growth of ref4-3 mutants is substantially alleviated by the light treatment that triggers SAS. Moreover, ref4-3 mimics the loss-of-function med5 mutants in maintaining abscisic acid (ABA) levels under both normal and drought growth conditions. The phenotypic characterization of med5 mutants extend our understanding of the role of Mediator in SAS and ABA signaling, providing further insight into the physiological and metabolic responses that require MED5

    Extensive preclinical evaluation of combined mangiferin and glycyrrhizic acid for restricting synovial neovascularization in rheumatoid arthritis

    No full text
    Abstract Background Synovial neovascularization promotes rheumatoid arthritis (RA) progression. Baihu guizhi decoction (BHGZD) has a potential in restricting this pathological change of RA. Purpose To identify bioactive compounds (BACs) of BHGZD and to elucidate the underlying mechanisms in restricting synovial neovascularization of RA. Method Through transcriptomic profiling, the chemical profiling of BHGZD and its effective transcriptomic profiling against RA were identified. Then, candidate targets and the corresponding BACs against synovial neovascularization were screened by “disease gene-drug target” interaction network analysis and in silico molecular docking. The binding affinities of candidate BAC-target pairs were verified using surface plasmon resonance, and the pharmacokinetic characteristics of BACs in vivo after BHGZD administration at different time points were detected by Ultra Performance Liquid Chromatography-Mass spectrum/Mass spectrum. After that, in vivo experiments based on adjuvant-induced arthritis (AIA-M) rats, and in vitro experiments based on human umbilical vein endothelial cells (HUVEC) and arthritic synovial fibroblasts (MH7A) were carried out to evaluate the pharmacological effects of BHGZD and the two-BACs-combination, and to verify the associated mechanisms. Result VEGFA/VEGFR2/SRC/PI3K/AKT signal axis was screened as one of the key network targets of BHGZD against synovial neovascularization in RA. Mangiferin (MG) and glycyrrhizic acid (GA) were identified as the representative BACs of BHGZD for their strong binding affinities with components of the VEGFA/VEGFR2/SRC/PI3K/AKT signal axis, and their high exposed quantity in vivo. Both BHGZD and the two-BAC combination of MG and GA were demonstrated to be effective in restricting disease severity, reducing synovial inflammation and decreasing the formation of vascular opacities in AIA-M rats, and also reducing the migrative and invasive activities of HUVEC and MH7A cells and attenuating the lumen formation ability of HUVEC cells significantly. Mechanically, both BHGZD and the two-BAC combination markedly reduced the expression of VEGFA in synovial tissues, the serum levels of VEGF and NO, and the enzymatic activity of eNOS, increased the content of endostatin, and also reversed the abnormal alterations in the VEGFA/VEGFR2/SRC/PI3K/AKT signal axis in vivo and in vitro. Conclusion MG and GA may be the representative BACs of BHGZD for restricting excessive synovial vascularization in RA via regulating VEGFA/VEGFR2/SRC/PI3K/AKT signal axis

    A New Virtual View Rendering Method based on Depth Map for 3DTV3DTV; virtual view rendering; depth; false contour; holes filling; image restoration

    Get PDF
    AbstractVirtual view rendering is one of the key technologies to realize Three-Dimensional Television (3DTV) system, but which still exists, such as false contour, holes and other issues. In this paper, these problems are been effective solved. First, we use the connection of pixel coordinate warping between reference image and virtual image in the rendering process, to make quick decision on the position of hole region and its edge and then utilize the way of outward expanding the edge of holes to cover residual or warping error pixels; then eliminate false contour by image synthesis with the left and right view images from rendering based on the location of holes; finally, we use mean filter and the image restoration method of total variation model to fill holes. The experimental results show that the proposed method improves the quality of virtual view images from rendering

    Melatonin Engineering M2 Macrophage‐Derived Exosomes Mediate Endoplasmic Reticulum Stress and Immune Reprogramming for Periodontitis Therapy

    No full text
    Abstract Periodontitis is a chronic infectious disease caused by bacterial irritation. As an essential component of the host immunity, macrophages are highly plastic and play a crucial role in inflammatory response. An appropriate and timely transition from proinflammatory (M1) to anti‐inflammatory (M2) macrophages is indispensable for treating periodontitis. As M2 macrophage‐derived exosomes (M2‐exos) can actively target inflammatory sites and modulate immune microenvironments, M2‐exos can effectively treat periodontitis. Excessive endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) are highly destructive pathological characteristics during inflammatory periodontal bone loss. Although melatonin has antioxidant and anti‐inflammatory effects, studies focusing on melatonin ER stress modulation remain limited. This study fabricates engineered M2‐exos loading with melatonin (Mel@M2‐exos) for treating periodontitis. As a result, M2‐exos drive an appropriate and timely macrophage reprogramming from M1 to M2 type, which resolves chronic inflammation and accelerated periodontal healing. Melatonin released from Mel@M2‐exos rescues the osteogenic and cementogenic differentiation capacity in inflammatory human periodontal ligament cells (hPDLCs) by reducing excessive ER stress and UPR. Injectable gelatin methacryloyl (GelMA) hydrogels with sustained‐release Mel@M2‐exos accelerate periodontal bone regeneration in rats with ligation‐induced periodontitis. Taken together, melatonin engineering M2 macrophage‐derived exosomes are promising candidates for inflammatory periodontal tissue regeneration

    Protein citrullination as a source of cancer neoantigens

    No full text
    Background Citrulline post-translational modification of proteins is mediated by protein arginine deiminase (PADI) family members and has been associated with autoimmune diseases. The role of PADI-citrullinome in immune response in cancer has not been evaluated. We hypothesized that PADI-mediated citrullinome is a source of neoantigens in cancer that induces immune response.Methods Protein expression of PADI family members was evaluated in 196 cancer cell lines by means of indepth proteomic profiling. Gene expression was assessed using messenger RNA data sets from The Cancer Genome Atlas. Immunohistochemical analysis of PADI2 and peptidyl-citrulline was performed using breast cancer tissue sections. Citrullinated 12–34-mer peptides in the putative Major Histocompatibility Complex-II (MHC-II) binding range were profiled in breast cancer cell lines to investigate the relationship between protein citrullination and antigen presentation. We further evaluated immunoglobulin-bound citrullinome by mass spectrometry using 156 patients with breast cancer and 113 cancer-free controls.Results Proteomic and gene expression analyses revealed PADI2 to be highly expressed in several cancer types including breast cancer. Immunohistochemical analysis of 422 breast tumor tissues revealed increased expression of PADI2 in ER− tumors (p<0.0001); PADI2 protein expression was positively correlated (p<0.0001) with peptidyl-citrulline staining. PADI2 expression exhibited strong positive correlations with a B cell immune signature and with MHC-II-bound citrullinated peptides. Increased circulating citrullinated antigen–antibody complexes occurred among newly diagnosed breast cancer cases relative to controls (p=0.0012).Conclusions An immune response associated with citrullinome is a rich source of neoantigens in breast cancer with a potential for diagnostic and therapeutic applications

    Plasma Based Protein Signatures Associated with Small Cell Lung Cancer

    No full text
    Small-cell-lung cancer (SCLC) is associated with overexpression of oncogenes including Myc family genes and YAP1 and inactivation of tumor suppressor genes. We performed in-depth proteomic profiling of plasmas collected from 15 individuals with newly diagnosed early stage SCLC and from 15 individuals before the diagnosis of SCLC and compared findings with plasma proteomic profiles of 30 matched controls to determine the occurrence of signatures that reflect disease pathogenesis. A total of 272 proteins were elevated (area under the receiver operating characteristic curve (AUC) ≄ 0.60) among newly diagnosed cases compared to matched controls of which 31 proteins were also elevated (AUC ≄ 0.60) in case plasmas collected within one year prior to diagnosis. Ingenuity Pathway analyses of SCLC-associated proteins revealed enrichment of signatures of oncogenic MYC and YAP1. Intersection of proteins elevated in case plasmas with proteomic profiles of conditioned medium from 17 SCLC cell lines yielded 52 overlapping proteins characterized by YAP1-associated signatures of cytoskeletal re-arrangement and epithelial-to-mesenchymal transition. Among samples collected more than one year prior to diagnosis there was a predominance of inflammatory markers. Our integrated analyses identified novel circulating protein features in early stage SCLC associated with oncogenic drivers

    Mutational Activation of the NRF2 Pathway Upregulates Kynureninase Resulting in Tumor Immunosuppression and Poor Outcome in Lung Adenocarcinoma

    No full text
    Activation of the NRF2 pathway through gain-of-function mutations or loss-of-function of its suppressor KEAP1 is a frequent finding in lung cancer. NRF2 activation has been reported to alter the tumor microenvironment. Here, we demonstrated that NRF2 alters tryptophan metabolism through the kynurenine pathway that is associated with a tumor-promoting, immune suppressed microenvironment. Specifically, proteomic profiles of 47 lung adenocarcinoma (LUAD) cell lines (11 KEAP1 mutant and 36 KEAP1 wild-type) revealed the tryptophan-kynurenine enzyme kynureninase (KYNU) as a top overexpressed protein associated with activated NRF2. The siRNA-mediated knockdown of NFE2L2, the gene encoding for NRF2, or activation of the NRF2 pathway through siRNA-mediated knockdown of KEAP1 or via chemical induction with the NRF2-activator CDDO-Me confirmed that NRF2 is a regulator of KYNU expression in LUAD. Metabolomic analyses confirmed KYNU to be enzymatically functional. Analysis of multiple independent gene expression datasets of LUAD, as well as a LUAD tumor microarray demonstrated that elevated KYNU was associated with immunosuppression, including potent induction of T-regulatory cells, increased levels of PD1 and PD-L1, and resulted in poorer survival. Our findings indicate a novel mechanism of NRF2 tumoral immunosuppression through upregulation of KYNU
    corecore