10 research outputs found

    Dynamic Changes in Surface Damage Induced by High-Intensity Mining of Shallow, Thick Coal Seams in Gully Areas

    No full text
    This study proposes a novel approach to study the mechanism of mining and dynamic changes in surface subsidence and geological hazard-prone regions caused by shallow, thick coal seam mining in gully areas. This approach combines field observation, three-dimensional modeling, numerical simulation, and theoretical analysis based on the conditions of the Chuancao Gedan coal mine. The in situ stress field of coalbeds is influenced by the gully terrain. Shear stress becomes concentrated on the surface, causing geological disasters such as landslides and collapse of gully slopes. High-intensity mining activities increase the concentration and are more likely to cause such geological disasters. The influence area and severity vary dynamically with the expansion of the excavation area. With the continuous expansion of coal seam mining, the amplification ratio η (the ratio of the maximum impact range of surface subsidence and the mined-out area) first increased to 3.35, then decreased, and finally reached a constant value of 2.1. The principle of road line selection is proposed based on an analysis of surface subsidence and gully slope stability on the goaf edge. The principle of subsection reinforcement of the gully slope under the dynamic influence of coal seam mining is also determined

    Study on the Stage Failure Mechanism and Stability Control of Surrounding Rock of Repeated Mining Roadway

    No full text
    China is one of the leading countries in the mining and utilization of coal resources, and the problems of coal-mining technology and safety have been concerned by the world, while the serious deformation and destruction of surrounding rock and the difficulty of support have brought inconvenience to the mining of coal resources due to repeated mining. This paper takes the actual engineering 22205 mining roadway in Buertai mine as the research background, through the combination of numerical simulation and field measurement. In this paper, the stress environment, plastic zone, and surrounding rock deformation in the advancing process of coal-mining face are studied, and the stress evolution law of surrounding rock in repeated mining roadway is obtained. It is clarified that the surrounding rock deformation is the failure mechanism under the combined action of principal stress difference and stress direction deflection. As a result, the surrounding rock of the roadway is asymmetrically deformed and destroyed, and the corresponding surrounding rock control scheme is put forward. The results show that the influence of repeated mining on roadway stress environment can be divided into four stages with the mining process: the stability stage of mining influence, the expansion stage of primary mining, the stable stage after primary mining, and the expansion stage of second mining. At the same time, the shape changes of the plastic zone and the displacement monitoring results of the monitoring are analyzed, and the results are obtained; the stage of stress change is suitable, and combined with the failure characteristics of surrounding rock in each stage, it is put forward that reinforcement measures should be taken in the stable stage after mining; the specific reinforcement scheme is determined according to the expansion form of plastic zone and field measurement. The on-site monitoring shows that there is no roof fall accident during the use of the roadway, which ensures the safety in production

    Failure Mechanism and Stability Control of Surrounding Rock of Docking Roadway under Multiple Dynamic Pressures in Extrathick Coal Seam

    No full text
    In view of multiseam mining under goaf, the surrounding rock control problem of lower coal roadway will be affected by concentrated coal pillar left in upper coal seam goaf and dynamic pressure superposition of working face in this coal seam. Under the geological environment of No. 16 extrathick coal seam in the Laoshidan coal mine and taking the working face 031604 as the research background, the reasonable docking position selection of the withdrawal roadway and the docking roadway in the middle mining period and the surrounding rock stability control problems of the withdrawal roadway and the docking roadway during the final mining period were studied by using the methods of field theoretical analysis, numerical simulation, and field measurement. The mechanical mechanism of the nonuniform failure of the retreating roadway and the docking roadway during the final mining period is shown, and the control method of the surrounding rock stability of the roadway is put forward and applied. The results show that (1) through the analysis of the superimposed stress under the concentrated coal pillar and the coal seam in advance, the specific butt joint position is arranged at 860 m away from the open-off cut, which is 10 m away from the goaf of No. 12 coal seam. (2) With the working face 031604 advancing through the process, the deviatoric stress value of the withdrawal roadway gradually increases, the maximum principal stress of the two sides of the roadway deflects clockwise from the vertical direction to the horizontal direction, its angle also gradually increases, and the shape of the plastic zone gradually expands from symmetry to asymmetry. (3) It is revealed that the peak value of deviatoric stress on both sides of the docking position of docking roadway increases gradually under the influence of mining and deflects anticlockwise to the vertical direction with the principal stress angle. The joint action of both is the mechanical mechanism that causes the plastic zone to expand in an asymmetric shape. (4) The coordinated control scheme of support (anchor bolt and anchor cable)—modified (grouting)—is adopted for the withdrawal roadway, and the coordinated control scheme of support (anchor bolt and anchor cable)—changing the cross-section shape of the roadway—is adopted for the docking roadway. The purpose of the smooth connection of working face and rapid and safe withdrawal of equipment is achieved on site

    Analytical solutions for characteristic radii of circular roadway surrounding rock plastic zone and their application

    No full text
    In the non-uniform stress field, the surrounding rock plastic zone of the circular roadway shows different shapes under the different confining pressure conditions. Based on the boundary shape characteristics of the plastic zone, the characteristic radii of the plastic zone were proposed, namely the horizontal, longitudinal and medial axis radii, which could reflect the plastic zone shapes characteristics and classify the sizes of the key parts. On the theoretical basis of elastic-plastic mechanics, analytical solutions for the characteristic radii were obtained by theoretical deduction, and the relationships between the characteristic radii and key influencing factors were analyzed. Finally, the evaluation criterion of the circular roadway surrounding rock plastic zone shapes, evaluation criterion of the location of potential hazards caused by the roadway surrounding rock and evaluation critical points of roadway dynamic disasters based on characteristic radii were proposed. This work could provide a theoretical basis for stability analysis of the surrounding rock, support design, and guide the prevention and control of dynamic roadway disasters. Keywords: Inhomogeneous stress field, Analytical solutions, Characteristic radii, Morphological identification, Disaster are

    The Principle of Invariant Stress of the Surrounding Rock of the Hole under the Condition of Equal Pressure in the Deep Rock Mass

    No full text
    Based on the hydrostatic pressure theory of initial stress state of rock mass, combined with Saint-Venant’s principle central idea, the principle of invariant stress of surrounding rock mass of the hole under the condition of equal pressure in deep rock mass is put forward. Numerical simulation is used to study the properties of surrounding rock and section shape of different holes, the depth of the plastic zone, the range of stress influence, and the relationship between them. The study results showed the following. (1) In the current mining depth range, it is difficult to reach the limit of 5 times the hole radius under the condition of invariant pressure of deep rock mass, and it has a significant impact on the near field and relatively small impact on the far field, reflecting the localization effect of the stress influence range. (2) The increase of stress influence range mainly moves outward with the increase of plastic zone range, and its growth slope is low and tends to be horizontal, and the increase amount is negligible. (3) When the failure range of the plastic zone of the hole is small, the influence range of the stress does not change itself, which reflects the stress invariability of the small-scale failure of the surrounding rock of the hole. The research results verify the principle of stress invariability of the surrounding rock of the hole under the condition of equal pressure of the deep rock mass, which is consistent with Saint-Venant’s central idea

    Research on the Control of Mining Instability and Disaster in Crisscross Roadways

    No full text
    In order to solve the disaster caused by the instability of spatial crisscross roadways under the action of leading abutment pressure in the coal mine face, combined with a specific engineering example, the methods of theoretical analysis, numerical simulation and field measurement are adopted to simulate and analyze the stress mutual disturbance intensity and influence range of spatial crisscross roadways. The evolution law of the plastic zone in spatial crisscross roadways under the influence of mining is explored, and the key to mining instability control is made clear. The roof of the return air roadway, the shoulder angle of the two sides and the coal wall are the key parts of surrounding rock stability control. On this basis, the cooperative control scheme of changing the roadway section shape (straight wall semicircular arch), supporting (anchor cable and “U” section steel) and modifying (grouting) is put forward. Through the field measurement, within the influence range of the return air roadway, the displacement deformation of the top and bottom is less than 200 mm, which achieves the goal of roadway safety and stability. Furthermore, based on the theory of “butterfly plastic zone”, the mechanical mechanism of the overall instability of the spatial crisscross roadway is revealed; that is, during the advance of the working face, the advance mining stress is superimposed with the surrounding rock stress of the crisscross roadway, and the peak value of the partial stress of the surrounding rock mass of the crisscross roadway is increased. The expansion of the plastic zone is intensified, and beyond 7 m from the crisscross position, the shoulder angle of the two sides and the leading plastic zone of the coal wall of the working face are connected with each other, which leads to the overall failure and instability of the surrounding rock between the roadways at the intersection

    High intrinsic phase stability of ultrathin 2M WS2

    No full text
    Abstract Metallic 2M or 1T′-phase transition metal dichalcogenides (TMDs) attract increasing interests owing to their fascinating physicochemical properties, such as superconductivity, optical nonlinearity, and enhanced electrochemical activity. However, these TMDs are metastable and tend to transform to the thermodynamically stable 2H phase. In this study, through systematic investigation and theoretical simulation of phase change of 2M WS2, we demonstrate that ultrathin 2M WS2 has significantly higher intrinsic thermal stabilities than the bulk counterparts. The 2M-to-2H phase transition temperature increases from 120 °C to 210 °C in the air as thickness of WS2 is reduced from bulk to bilayer. Monolayered 1T′ WS2 can withstand temperatures up to 350 °C in the air before being oxidized, and up to 450 °C in argon atmosphere before transforming to 1H phase. The higher stability of thinner 2M WS2 is attributed to stiffened intralayer bonds, enhanced thermal conductivity and higher average barrier per layer during the layer(s)-by-layer(s) phase transition process. The observed high intrinsic phase stability can expand the practical applications of ultrathin 2M TMDs

    Enhanced CT Images by the Wavelet Transform Improving Diagnostic Accuracy of Chest Nodules

    No full text
    The objective of this study was to compare the diagnostic accuracy in the interpretation of chest nodules using original CT images versus enhanced CT images based on the wavelet transform. The CT images of 118 patients with cancers and 60 with benign nodules were used in this study. All images were enhanced through an algorithm based on the wavelet transform. Two experienced radiologists interpreted all the images in two reading sessions. The reading sessions were separated by a minimum of 1 month in order to minimize the effect of observer’s recall. The Mann–Whitney U nonparametric test was used to analyze the interpretation results between original and enhanced images. The Kruskal–Wallis H nonparametric test of K independent samples was used to investigate the related factors which could affect the diagnostic accuracy of observers. The area under the ROC curves for the original and enhanced images was 0.681 and 0.736, respectively. There is significant difference in diagnosing the malignant nodules between the original and enhanced images (z = 7.122, P < 0.001), whereas there is no significant difference in diagnosing the benign nodules (z = 0.894, P = 0.371). The results showed that there is significant difference between original and enhancement images when the size of nodules was larger than 2 cm (Z = −2.509, P = 0.012, indicating the size of the nodules is a critical evaluating factor of the diagnostic accuracy of observers). This study indicated that the image enhancement based on wavelet transform could improve the diagnostic accuracy of radiologists for the malignant chest nodules
    corecore