15 research outputs found

    Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex

    Get PDF
    Human neurons function over an entire lifetime, yet the molecular mechanisms which perform their functions and protecting against neurodegenerative disease during aging are still elusive. Here, we conducted a systematic study on the human brain aging by using the weighted gene correlation network analysis (WGCNA) method to identify meaningful modules or representative biomarkers for human brain aging. Significantly, 19 distinct gene modules were detected based on the dataset GSE53890; among them, six modules related to the feature of brain aging were highly preserved in diverse independent datasets. Interestingly, network feature analysis confirmed that the blue modules demonstrated a remarkably correlation with human brain aging progress. Besides, the top hub genes including PPP3CB, CAMSAP1, ACTR3B, and GNG3 were identified and characterized by high connectivity, module membership, or gene significance in the blue module. Furthermore, these genes were validated in mice of different ages. Mechanically, the potential regulators of blue module were investigated. These findings highlight an important role of the blue module and its affiliated genes in the control of normal brain aging, which may lead to potential therapeutic interventions for brain aging by targeting the hub genes

    Spin-phonon scattering-induced low thermal conductivity in a van der Waals layered ferromagnet Cr2_2Si2_2Te6_6

    Full text link
    Layered van der Waals (vdW) magnets are prominent playgrounds for developing magnetoelectric, magneto-optic and spintronic devices. In spintronics, particularly in spincaloritronic applications, low thermal conductivity (κ\kappa) is highly desired. Here, by combining thermal transport measurements with density functional theory calculations, we demonstrate low κ\kappa down to 1 W m1^{-1} K1^{-1} in a typical vdW ferromagnet Cr2_2Si2_2Te6_6. In the paramagnetic state, development of magnetic fluctuations way above Tc=T_\mathrm{c}= 33 K strongly reduces κ\kappa via spin-phonon scattering, leading to low κ\kappa \sim 1 W m1^{-1} K1^{-1} over a wide temperature range, in comparable to that of amorphous silica. In the magnetically ordered state, emergence of resonant magnon-phonon scattering limits κ\kappa below \sim 2 W m1^{-1} K1^{-1}, which would be three times larger if magnetic scatterings were absent. Application of magnetic fields strongly suppresses the spin-phonon scattering, giving rise to large enhancements of κ\kappa. Our calculations well capture these complex behaviours of κ\kappa by taking the temperature- and magnetic-field-dependent spin-phonon scattering into account. Realization of low κ\kappa which is easily tunable by magnetic fields in Cr2_2Si2_2Te6_6, may further promote spincaloritronic applications of vdW magnets. Our theoretical approach may also provide a generic understanding of spin-phonon scattering, which appears to play important roles in various systems.Comment: 14 pages, 6 figures, accepted for publication in Advanced Functional Material

    Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices

    Get PDF
    Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study

    Improving the Robustness of Wasserstein Embedding by Adversarial PAC-Bayesian Learning

    No full text
    Node embedding is a crucial task in graph analysis. Recently, several methods are proposed to embed a node as a distribution rather than a vector to capture more information. Although these methods achieved noticeable improvements, their extra complexity brings new challenges. For example, the learned representations of nodes could be sensitive to external noises on the graph and vulnerable to adversarial behaviors. In this paper, we first derive an upper bound on generalization error for Wasserstein embedding via the PAC-Bayesian theory. Based on this, we propose an algorithm called Adversarial PAC-Bayesian Learning (APBL) in order to minimize the generalization error bound. Furthermore, we provide a model called Regularized Adversarial Wasserstein Embedding Network (RAWEN) as an implementation of APBL. Besides our comprehensive analysis of the robustness of RAWEN, our work for the first time explores more kinds of embedded distributions. For evaluations, we conduct extensive experiments to demonstrate the effectiveness and robustness of our proposed embedding model compared with the state-of-the-art methods

    Discrimination of Black and White Sesame Seeds Based on Targeted and Non-Targeted Platforms with Chemometrics: From Profiling towards Identification of Chemical Markers

    No full text
    The present study was conducted to clarify the differences in the multi-element, volatile organic compound, fatty acid, and metabolite fingerprints between black and white sesame seeds. A total of 53 chemical elements, 32 volatile flavor compounds, 40 fatty acids, and 283 metabolites were identified and evaluated in the two groups of sesame seeds. Univariate and multivariate statistics indicated a distinct separation between the two groups of sesame seeds. A panel of 16 chemical elements, 3 volatile compounds, 8 individual fatty acids, and 54 metabolites with p value < 0.05 and variable importance in projection score > 1 were selected as the most important discriminants for the two types of sesame seeds. Overall, these data reveal the influence of genotype on the chemical composition of sesame seeds. Our findings also demonstrate that the hybrid model of instrumental analysis and chemometrics is feasible for the discrimination of black and white sesame seeds

    Spin‐Phonon Scattering‐Induced Low Thermal Conductivity in a van der Waals Layered Ferromagnet Cr2_2Si2_2Te6_6

    No full text
    Layered van der Waals (vdW) magnets are prominent playgrounds for developing magnetoelectric, magneto-optic, and spintronic devices. In spintronics, particularly in spincaloritronic applications, low thermal conductivity (κ) is highly desired. Herein, by combining thermal transport measurements with density functional theory calculations, this study demonstrates low κ down to 1 W m−1 K−1 in a typical vdW ferromagnet Cr2Si2Te6. In the paramagnetic state, development of magnetic fluctuations way above Tc = 33 K strongly reduces κ via spin-phonon scattering, leading to low κ ≈ 1 W m−1 K−1 over a wide temperature range, in comparable to that of amorphous silica. In the magnetically ordered state, emergence of resonant magnon-phonon scattering limits κ below ≈2 W m−1 K−1, which will be three times larger if magnetic scatterings are absent. Application of magnetic fields strongly suppresses the spin-phonon scattering, giving rise to large enhancements of κ. This study's calculations well capture these complex behaviors of κ by taking the temperature- and magnetic-field-dependent spin-phonon scattering into account. Realization of low κ, which is easily tunable by magnetic fields in Cr2Si2Te6, may further promote spincaloritronic applications of vdW magnets. This study's theoretical approach may also provide a generic understanding of spin-phonon scattering, which appears to play important roles in various systems

    The Kinase Activity of Hematopoietic Progenitor Kinase 1 Is Essential for the Regulation of T Cell Function

    No full text
    Summary: We examined hematopoietic protein kinase 1 (HPK1), whose reliance on scaffold versus kinase functions for negative immune cell regulation is poorly understood and critical to its assessment as a viable drug target. We identify kinase-dependent roles for HPK1 in CD8 T cells that restrict their anti-viral and anti-tumor responses by using HPK1 kinase-dead (HPK1.kd) knockin mice. Loss of HPK1 kinase function enhanced T cell receptor signaling and cytokine secretion in a T-cell-intrinsic manner. In response to chronic lymphocytic choriomeningitis virus (LCMV) infection or tumor challenge, viral clearance and tumor growth inhibition were enhanced in HPK1.kd mice, accompanied by an increase in effector CD8 T cell function. Co-blockade of PD-L1 further enhanced T effector cell function, resulting in superior anti-viral and anti-tumor immunity over single target blockade. These results identify the importance of HPK1 kinase activity in the negative regulation of CD8 effector functions, implicating its potential as a cancer immunotherapy target. : HPK1 is implicated in several important steps that limit T cell responsiveness, but the mechanism is poorly characterized. Hernandez et al. demonstrate that HPK1’s kinase activity is essential for attenuating T cell function. Loss of HPK1 kinase activity enhanced antitumoral responses, proving to be an attractive target for cancer immunotherapy. Keywords: HPK1, hematopoietic progenitor kinase 1, cancer immunotherap

    Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices

    No full text
    Abstract Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study
    corecore