96 research outputs found

    Mobility dilemmas: Conflict analysis of road constructions in a Tibetan tourism community in China

    Get PDF
    Road construction offers a unique lens through which to investigate tourism mobility. To date, research has focused on the socio-cultural effects of road construction, such as its influence on tourists’ movements and its hindrance to tourism development, with less use of systematic methods to analyze road construction-related conflicts. Accordingly, this study comprised a systematic analysis of road construction-related conflicts in Yubeng, China, and potential strategies to solve the underlying mobility dilemmas. A geo-historical trajectory of conflicts was examined, and road construction conflicts were categorized as involving resource competition, tourism dilemma, modern anxiety, or protection paradox. Then, formal conflict analysis and an evolutionary game model were used to analyze these different conflict categories and develop a general pattern of strategies by which the dilemmas might be resolved. The theoretical implications and practical insights of the findings for tourism development, as well as other social conflict contexts, were also investigated

    Focusing MSs for High-Gain Antenna Applications

    Get PDF
    Recently, metasurfaces (MSs) have continuously drawn significant attentions in the area of enhancing the performances of the conventional antennas. Thereinto, focusing MSs with hyperbolic phase distributions can be used for designing high-gain antennas. In this chapter, we first design a new reflected MS and use a spiral antenna as the feeding source to achieve a wideband high-gain antenna. On this basis, we propose a bi-layer reflected MS to simultaneously enhance the gain and transform the linear polarization to circular polarization of the Vivaldi antenna. Then, we proposed a multilayer transmitted MS and use it to enhance the gain of a patch antenna. This kind of high-gain antenna eliminates the feed-block effect of the reflected ones but suffer from multilayer fabrication. To conquer this problem, we finally propose a single-layer transmitted focusing MS by grouping two different kinds of elements and use it to successfully design a low-profile high-gain antenna

    The Changing Patterns in Grasslands and Soil Fertility along the Eastern Eurasian Steppe Transect across China–Mongolia–Russia

    Get PDF
    This paper analyses the adaptation and change in species along the north-south Eastern Eurasian Steppe Transect across China – Mongolia – Russia and considers the implications for climate change and management. The plant community diversity, above-ground biomass, N:P ratios of community and of dominant species, soil N (nitrogen), soil P (phosphorus) and AP (available phosphorus) contents were studied along a 1400 km north-south transect. The main findings were: (1) the community diversity and productivity decreased with the increase in latitude and a significant negative correlation was found between the many plant characteristics and latitude (P \u3c 0.05) – decreasing diversity, biomass and N:P ratios; (2) soil AP content was lowest in Inner Mongolia, whereas no significant change in soil total P with latitude was found in China-Mongolia-Russia transect, a significant positive correlation was detected between the soil nutrient (N and AP) and latitude (P \u3c 0.05); (3) a significant positive correlation was evident between plant community P content and soil AP content (P \u3c 0.01), but a negative correlation was found between community N:P ratio and soil AP content (P \u3c 0.05). The soil AP content can be used as a soil properties indicator to reflect the plant communities P content and N: P ratio. It is suggested that greater human activities in Inner Mongolia may be an important factor affecting soil AP content, community N:P and plant growth

    Correlation between intercalated magnetic layers and superconductivity in pressurized EuFe2(As0.81P0.19)2

    Full text link
    We report comprehensive high pressure studies on correlation between intercalated magnetic layers and superconductivity in EuFe2(As0.81P0.19)2 single crystal through in-situ high pressure resistance, specific heat, X-ray diffraction and X-ray absorption measurements. We find that an unconfirmed magnetic order of the intercalated layers coexists with superconductivity in a narrow pressure range 0-0.5GPa, and then it converts to a ferromagnetic (FM) order at pressure above 0.5 GPa, where its superconductivity is absent. The obtained temperature-pressure phase diagram clearly demonstrates that the unconfirmed magnetic order can emerge from the superconducting state. In stark contrast, the superconductivity cannot develop from the FM state that is evolved from the unconfirmed magnetic state. High pressure X-ray absorption (XAS) measurements reveal that the pressure-induced enhancement of Eu's mean valence plays an important role in suppressing the superconductivity and tuning the transition from the unconfirmed magnetic state to a FM state. The unusual interplay among valence state of Eu ions, magnetism and superconductivity under pressure may shed new light on understanding the role of the intercalated magnetic layers in Fe-based superconductors

    The R Protein of SARS-CoV: Analyses of Structure and Function Based on Four Complete Genome Sequences of Isolates BJ01-BJ04

    Get PDF
    The R (replicase) protein is the uniquely defined non-structural protein (NSP) responsible for RNA replication, mutation rate or fidelity, regulation of transcription in coronaviruses and many other ssRNA viruses. Based on our complete genome sequences of four isolates (BJ01-BJ04) of SARS-CoV from Beijing, China, we analyzed the structure and predicted functions of the R protein in comparison with 13 other isolates of SARS-CoV and 6 other coronaviruses. The entire ORF (open-reading frame) encodes for two major enzyme activities, RNA-dependent RNA polymerase (RdRp) and proteinase activities. The R polyprotein undergoes a complex proteolytic process to produce 15 function-related peptides. A hydrophobic domain (HOD) and a hydrophilic domain (HID) are newly identified within NSP1. The substitution rate of the R protein is close to the average of the SARS-CoV genome. The functional domains in all NSPs of the R protein give different phylogenetic results that suggest their different mutation rate under selective pressure. Eleven highly conserved regions in RdRp and twelve cleavage sites by 3CLP (chymotrypsin-like protein) have been identified as potential drug targets. Findings suggest that it is possible to obtain information about the phylogeny of SARS-CoV, as well as potential tools for drug design, genotyping and diagnostics of SARS

    Identification of Susceptibility Pathways for the Role of Chromosome 15q25.1 in Modifying Lung Cancer Risk

    Get PDF
    Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc
    • 

    corecore