14 research outputs found

    Elastic Modulus Calculation Model of a Soil-Rock Mixture at Normal or Freezing Temperature Based on Micromechanics Approach

    Get PDF
    Considering rock wrapped by soil in the mesoscopic structure of soil-rock mixture at normal temperature, a two-layer embedded model of single inclusion composite material was established to obtain the elastic modulus of soil-rock mixture. Given an interface ice interlayer attached between the soil and rock interface in the mesoscopic structure of soil-rock mixture at freezing temperature, a three-layer embedded model of double inclusion composite material and multistep multiphase micromechanics model was established to obtain the elastic modulus of a frozen soil-rock mixture. With the effect of structure pore with soil-rock mixture at normal temperature taken into consideration, its elastic modulus was calculated with the three-layer embedded model. An experimental comparison found that the predicted effect of the three-layer embedded model on the soil-rock mixture was better than that of the two-layer embedded model. The elastic modulus of soil-rock mixture gradually increased with the increase in rock content regardless of temperature. The increase rate of the elastic modulus of the soil-rock mixture increased quickly especially when the rock content is between 50% and 70%. The elastic modulus of the frozen soil-rock mixture is close to four times higher than that of the soil-rock mixture at a normal temperature

    Cell-Type Independent MYC Target Genes Reveal a Primordial Signature Involved in Biomass Accumulation

    Get PDF
    The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP), global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs). We further document that a Myc core signature (MCS) set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells
    corecore