5,798 research outputs found

    Prp8 intein in fungal pathogens: target for potential antifungal drugs

    Get PDF
    AbstractInteins are self-splicing intervening sequences in proteins, and inteins of pathogenic organisms can be attractive drug targets. Here, we report an intein in important fungal pathogens including Aspergillus fumigatus, Aspergillus nidulans, Histoplasma capsulatum, and different serotypes of Cryptococcus neoformans. This intein is inside the extremely conserved and functionally essential Prp8 protein, and it varies in size from 170 aa in C. neoformans to 819 aa in A. fumigatus, which is caused by the presence or absence of an endonuclease domain and a putative tongs subdomain in the intein. Prp8 inteins of these organisms were demonstrated to do protein splicing in a recombinant protein in Escherichia coli. These findings revealed Prp8 inteins as attractive targets for potential antifungal drugs to be identified using existing selection and screening methods

    Numerical Analysis of Discrete Switching Prey-Predator Model for Integrated Pest Management

    Get PDF
    The switching discrete prey-predator model concerning integrated pest management has been proposed, and the switches are guided by the economic threshold (ET). To begin with, the regular and virtual equilibria of switching system have been discussed and the key parameter bifurcation diagrams for the existence of equilibria have been proposed, which reveal the three different regions of equilibria. Besides, numerical bifurcation analyses show that the switching discrete system may have complicated dynamics behavior including chaos and the coexistence of multiple attractors. Finally, the effects of key parameters on the switching frequencies and switching times are discussed and the sensitivity analysis of varying parameter values for mean switching times has also been given. The results proved that economic threshold (ET) and the growth rate (α) were the key parameters for pest control

    RBF-based supervisor path following control for ASV with time-varying ocean disturbance

    Get PDF
    1028-1036A robust model-free path following controller is developed for autonomous surface vehicle (ASV) with time-varying ocean disturbance. First, the geometrical relationship between ASV and virtual tracking point on the reference path is investigated. The differentiations of tracking errors are described with the relative motion method, which greatly simplified the direct differential of tracking errors. Furthermore, the control law for the desired angular velocity of the vehicle and virtual tracking point are built based on the Lyapunov theory. Second, the traditional proportional-integral-derivative (PID) controller is developed based on the desired velocities and state feedback. The radial basic function (RBF) neural network taking as inputs the desired surge velocity and yaw angular velocity is developed as the supervisor to PID controller. Besides, RBF controller tunes weights according to the output errors between the PID controller and supervisor controller, based on the gradient descent method. Hence, PID controller and RBF supervisor controller act as feedback and feed forward control of the system, respectively. Finally, comparative path following simulation for straight path and sine path illustrate the performance of the proposed supervisor control system. The PID controller term reports loss of control even in the unknown disturbance

    A threshold dislocation dynamics method

    Full text link
    The Merriman-Bence-Osher threshold dynamics method is an efficient algorithm to simulate the motion by mean curvature. It has the advantages of being easy to implement and with high efficiency. In this paper, we propose a threshold dynamics method for dislocation dynamics in a slip plane, in which the spatial operator is essentially an anisotropic fractional Laplacian. We show that this threshold dislocation dynamics method is able to give { two correct leading orders} in dislocation velocity, including both the O(logε)O(\log\varepsilon) local curvature force and the O(1)O(1) nonlocal force due to the long-range stress field generated by the dislocations as well as the force due to the applied stress, where ε\varepsilon is the dislocation core size, { if the time step is set to be Δt=ε\Delta t=\varepsilon. This generalizes the available result of threshold dynamics with the corresponding fractional Laplacian, which is on the leading order O(logΔt)O(\log\Delta t) local curvature velocity under the isotropic kernel.} We also propose a numerical method based on spatial variable stretching to correct the mobility and to rescale the velocity for efficient and accurate simulations, which can be applied generally to any threshold dynamics method. We validate the proposed threshold dislocation dynamics method by numerical simulations of various motions and interaction of dislocations.Comment: 35 pages, 13 figure

    SoK: Diving into DAG-based Blockchain Systems

    Full text link
    Blockchain plays an important role in cryptocurrency markets and technology services. However, limitations on high latency and low scalability retard their adoptions and applications in classic designs. Reconstructed blockchain systems have been proposed to avoid the consumption of competitive transactions caused by linear sequenced blocks. These systems, instead, structure transactions/blocks in the form of Directed Acyclic Graph (DAG) and consequently re-build upper layer components including consensus, incentives, \textit{etc.} The promise of DAG-based blockchain systems is to enable fast confirmation (complete transactions within million seconds) and high scalability (attach transactions in parallel) without significantly compromising security. However, this field still lacks systematic work that summarises the DAG technique. To bridge the gap, this Systematization of Knowledge (SoK) provides a comprehensive analysis of DAG-based blockchain systems. Through deconstructing open-sourced systems and reviewing academic researches, we conclude the main components and featured properties of systems, and provide the approach to establish a DAG. With this in hand, we analyze the security and performance of several leading systems, followed by discussions and comparisons with concurrent (scaling blockchain) techniques. We further identify open challenges to highlight the potentiality of DAG-based solutions and indicate their promising directions for future research.Comment: Full versio
    corecore