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The switching discrete prey-predator model concerning integrated pest management has been proposed, and the switches are
guided by the economic threshold (ET). To begin with, the regular and virtual equilibria of switching system have been discussed
and the key parameter bifurcation diagrams for the existence of equilibria have been proposed, which reveal the three different
regions of equilibria. Besides, numerical bifurcation analyses show that the switching discrete system may have complicated
dynamics behavior including chaos and the coexistence of multiple attractors. Finally, the effects of key parameters on the switching
frequencies and switching times are discussed and the sensitivity analysis of varying parameter values for mean switching times has
also been given. The results proved that economic threshold (ET) and the growth rate («) were the key parameters for pest control.

1. Introduction

The integrated pest management (IPM) is applied [1-3]. IPM
is a long-term control strategy that combines biological,
cultural, and chemical tactics to reduce the density of pest
populations to economic injury level (EIL) when the pests
reach an economic threshold (ET) [1, 2]. The classic Lotka-
Volterra type prey-predator system for pest control presents
as

dx x

o’ —rx<1— §>—bxy,

p @
d_)t} =cxy —dy,

where x(t) and y(¢) denote prey and predator densities,
respectively; all the parameters in system (1) are positive
constants.

For the sake of simplicity, we rewrite system (1) as follows:

Z—f =ax (1 - x) - Bxy,

dy B
i (Bx—9) y,

)

where & = K, B = K’c, and & = dK. The discrete-time
prey-predator system can be obtained by the forward Euler
scheme to system (2):

x(t+1) = x () +0[ax(®)(1-x(6) - px () y(®)],
yt+1)=y®)+o(=0+px()y (1),

where o is the step size. In model (3), if the prey stands for
the pest population and the predator stands for the natural
enemies, then what we want to know is that how many
key parameters affect the pest control when integrated pest
management (IPM) is applied. An ET is usually defined as the
density of pest population in the field when control actions
must be taken to prevent the EIL from being reached and
exceeded. This indicates that the main objective of IPM is to
maintain the density of pest population below the EIL rather
than eradicate it.

In this study, The prey population and the predator
population are regarded as the pest and the natural enemy,
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respectively. we want to discuss discrete-time prey-predator
models by utilizing a threshold policy (TP) to control the
pest population (prey). When the pest population density is
above the economic threshold (ET), the pesticides are applied
for pest population and the natural enemies (predator)
population is released simultaneously. The IPM subsystem
with x(t) > ET based on (3) is as follows:

x(t+1)
=(1-p)(x(®) +0[ax () (1-x(t) - px(t) y(1)]), @
yt+1)=y@E)+o(-0+Bx1)yt)+oTy(t),

x (t) = ET,

where 0 < p < 1 is the reduction proportion of the pest
population density by killing or trapping when the number of
pests reaches ET and 7 is the increasing proportion of natural
enemies when pest population exceeds ET. In order to control
the pest, in this paper we assume 7 > 0. Furthermore, if p = 0,
we only release sufficient natural enemies to prevent the pest
population from exceeding ET. If p > 0 and 7 = 0, then we
adopt the chemical control strategy so that it can ensure pest
population decrease when the pest population reaches the ET.

By RZ = {(x(t),y(®) | x(t) = 0, y(t) > 0}, the
nonnegative octant could be split in two parts:

G'={(x®,y®) e R: | x(t) < ET},
(5)
G ={(x(®),y(®) e R: | x(t) > ET}.

In the region G' the more profitable prey density is below
ET in system (3). In the region G, if the prey density is above
ET in system (4), the IPM strategy is applied, which includes
spraying the pesticides and releasing the natural enemies.

We combine system (3) in region G' and system (4) in
region G

x(t+)=x@t)+oax()(1-x@)-Bx(t)y@®)],
y(E+1) =y () +0o(=0+px()y(t),
x (t) < ET,
x(t+1)=(1-0p)x(t) (6)
o fax ) (1-x () - px ) y ()],
yt+1) =y)+o(-0+Px(t) y(t)+ory (),
x (t) > ET,
50 systems (6) in region G, and in region G, are divided into

two different subsystems by utilizing threshold policy (ET),
which are denoted as S and S, respectively.

2. Fixed Point in Discrete Switching System

In this section, from the point of pest control, we consider the
discrete-time switching system (6) in the closed first quadrant
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Ri of the (x, y) plane. We first discuss the existence of fixed
points for subsystems S and Sgz, respectively, and then
study the switching behavior of fixed points by utilizing a
threshold policy.

2.1. Existence and Locally Asymptotic Stability of Fixed Points
for the Subsystems S and Sg:. For the subsystem Si;1, we are
interested in the positive point; let x(t + 1) = x(¢) = x*, y(t+
1) = y(t) = y*. By asimple computation, it is straightforward
to obtain the following results.

If B > 6, the subsystem S5 has a unique positive fixed
point (x7, y1) = (8/f, a(f — 8)/B*). The stability of the fixed
point has been discussed by Liu and Xiao [4].

We have similar analysis for subsystem Ss. It is clear
that subsystem Sz has unique positive fixed point (x5, y;) =
(8- 1)/B, (B~ 0) +ar - Bp)/f),if & > 7 and a(B - §) >
Bp — at. Before we investigate the stability of the fixed point,
we need the following lemma, which can be easily proved
by the relations between roots and coeflicients of a quadratic
equation [5].

Lemmal. Let F(A) = A>+PA+Q. Suppose that F(1) > 0 and
Ay, A, are two roots of F(A) = 0. Then

(i) 1M1 < 1, and |A,| < 1 if and only if F(-1) > 0 and
Q>1

(i) M| < 1, and |A,] > 1 (or |A)| > 1, and |A,| < 1) if
and only if F(-1) < 0;

(iii) [A4| > 1, and |A,| > 1 if and only if F(-1) > 0 and
Q>1

(iv) A, = =1, and |A,| # 1 if and only if F(~1) = 0 and
P +0,2;

(v) A, and A, are complex and |A,| = 1 and |A,| = 1 ifand
onlyif P —4Q < 0and Q = 1.

Note that the local stability of the fixed point (x5, y5) is
determined by the modules of eigenvalues of the character-
istic equation. The Jacobian matrix J of the subsystem S at
(x5, y5) is given by

J(x3,75)
<—20c0x; +ao - po+1-0ofy,
By,

—ofx; > 7)
1-08+0aBx; +01

and the characteristic equation of the Jacobian matrix J(x;,
¥, ) can be written as

A2+(—2+H0)A+(1—H0+G02)=0. (8)
The characteristic polynomial is denoted as

F(A)=A2+(—2+H0)A+(1—H0+G02), )
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where

2 2
G:—%+(x6—(x‘r+p‘r+2%—£—6p

B

:(8—7)(oc/3—(x6+ocr—p/3)>0 (10)

B

Hz(%—%): “(6/3_7) > 0.

Then F(1) = Go* > 0 and F(-1) = 4 - 2Ho” + Go”.

Let A, and A, are two roots of the characteristic equation
(8), which are called eigenvalues of the fixed point (x;, y5).
The fixed point (x5, y, ) is called a sinkif [A,| < 1and |A,] < 1;
the sink is locally asymptotically stable. (x;, ;) is called a
source if [A;| > 1 and |A,] > 1; the source is locally unstable.
(x5, y5) is called a saddle if A, | < 1and [A,] > 1 (or [A,| > 1
and [A,| < 1). (x5, v, ) is called nonhyperbolic if either |A,]| =
lor A, =1.

Then we can calculate the local dynamics of the fixed
point (x5, y,) by Lemma L.

Proposition 2. Let (x5, y;) be the positive fixed point of (8).

(i) It is a sink if one of the following conditions holds:

(i1) G > H*/4and o > (H - VH? - 4G)/G;
(i2) G< H*/4and H/G > ¢ > 0.

(ii) It is a source if one of the following conditions holds:

(ii.1) G > H*/4 and 0 > (H + VH? - 4G)/G;
(ii.2) G < H*/4 and o > H/G.

(iii) It is a saddle if the following condition holds: G > H* /4
and (H + VH? - 4G)/G > 0 > (H - VH? - 4G)/G.

(iv) It is nonhyperbolic if the following condition holds: G >
H’/4ando = (H+ VH? - 4G)/G and o # 2/H, 4/H.

2.2. Equilibria for Switching Dynamics of System (6). In
the following section, the definition of the real and virtual
equilibria concepts is briefly summarized [6-8], and several
types of equilibrium are discussed.

Definition 3. Let Z' = (x],y) be the stable equilibrium
point of the dynamics of region G' for i = 1,2. Then Z' is
called a real equilibrium if it belongs to subsystem S5 and a
virtual equilibrium if it belongs to Sg;, j # 4, for i, j = 1,2.
The real equilibrium is denoted as Z! and Z> and the virtual
equilibrium points are denoted as Z, and Zi, respectively.

For the subsystem S; with x < ET (i.e,, it belongs to
region G'),if 8 > 8 and §/B < ET, then it is a real equilibrium
for the system Sg;:, denoted by Z!. If > § and &/ > ET,
then it is a virtual equilibrium for the system Sg1, denoted by
Z!. About real equilibria for the subsystem S;: with x > ET
(ie. it belongs to region G*), on the basis of coordinate of

equilibrium Z* = (x5, ¥, ), we have the following results. If
6 > 1, a(f-0) > Bp—ar,and (6 — 1)/ = ET, then
it is a real equilibrium for the system S, denoted by Z2. If
d>1, a(f—-0) > Pp—ar,and (§ — 7)/P < ET, thenitisa
virtual equilibrium for the system Sg:, denoted by Z2.

In order to consider the relationship of equilibria for two
subsystems, we define five curves as follows: L, = §/f3, L, =
(6-1)/B, Ly = a(f-08)/B%, L, = (a(f~8)+ar—pp)/Bf* and
L = ET. Based on the above analysis and (§ — 1)/ < 6/,
we consider the following three cases.

(i) IfET < (6 — 1)/ < &/, the equilibria Z11, and Zf can
coexist as shown in Figure 1(a).

(ii) If (8 — 7)/B < ET < 8/, the equilibria Z! and Z2 can
coexist (i.e., Figure 1(b)).

(iii) If (6 — 1)/B < 6/B < ET, then the equilibria Zi
and Zﬁ can coexist (shown in Figures 1(c) and 1(d)).
Moreover, when ET = 0.8, the attractor converges to
the Z: (see Figure 1(d)).

In the process of pest control, we should use IPM strate-
gies to prevent pest outbreaks (i.e., x(t) < ET). According
to the above discussions, it is obvious that 8, 7, and ET are
key factors in determining the existence of the above different
types of equilibria of system (6). So we discuss the 3 and ET
parameter space and f3 and 7 parameter space, respectively,
which can be divided into three regions (see Figure 2), and
coexistence of real or virtual equilibria is indicated in each
region. Figure 2(a) shows the § and ET parameter space
with § = 2.0 and v = 1 and Figure 2(b) shows parameter
space with ET = 0.8 and § = 2. In region I, Zi and Zﬁ
coexist, and Zi and Zf can coexist in region III. Moreover,
It is obvious that the two virtual equilibria Zi and Zﬁ can
coexist in region II. The region II is very important for pest
control. In practice, we should apply IPM strategies to prevent
multiple pest outbreaks (i.e., x(¢) = ET) in the process of pest
control. So, we should choose a set of parameters such that all
the equilibria of subsystems S and Sz are virtual equilibria,
which have been widely used in pest control and plant disease
1, 3, 9]. Therefore, from the perspective of pest management,
the appropriate control strategies and ET should be designed
such that the interior equilibrium of S51 and S52 is virtual
simultaneously; the region II (purple) is the ideal region to
design optimal control strategy as shown in Figure 2.

3. Numerical Bifurcation Analysis

In order to show the richer dynamic behavior of discrete
switching system (6) aiming to address the implications in
biological pest control, we carry out numerical bifurcation
investigations in this section.

3.1 Bifurcation Diagrams with Different Key Parameters. To
discuss the complex dynamics of model (6), we first choose
the step size o as a bifurcation parameter and fix all other
parameter values as those in Figure 3, where Figures 3(a)
and 3(b) are bifurcation diagrams for prey and predator
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FIGURE 1: Real/virtual equilibria. The parameter values are fixed as follows: p = 0.1, =1, 0 =0.35, =4, a =3,and § = 2.0. (a) Zi and
Zf coexist with ET = 0.2. (b) Zi and Zi coexist with ET = 0.45. (¢) Zi and Zi coexist with ET = 0.52. (d) Zi and Zi coexist with ET = 0.8.

populations, respectively. They indicate that if the amplitude
of the step size o is increasing from 0.45 to 0.79, the system
goes through very complicated behavior, including chaos
bands, narrow and wide period-windows, and chaos crises.
As the parameter ¢ increases from 0.45 to 0.68, there exist
different periodicity attractors. As o further increases (i.e.,
o € (0.68,0.79)), the system enters chaotic state. There exists a
wide multiattractors coexistence region when o € (0.46, 0.53)
and (0.645,0.67) especially; the details on multiattractors
coexistence are discussed in the following section.

3.2. Multiple Attractors, Coexistence, and Initial Sensitivity.
From Figure 3, we know that several types of attractors
coexist. In view of this, we will focus on how the initial
densities affect the final states, pest outbreaks, and successful
pest control. To confirm this, we fix all parameters as those in
Figure 4 and choose different initial densities. For example,
two different prey-outbreak attractors coexist at ¢ = 0.66,
from which we can find that the two prey-outbreak attractors
have different amplitudes and frequencies. Let the initial
density of prey and predator be (xy,y,) = (0.4,0.15);
then the outbreak patterns for prey population are quite
complex, as shown in Figure 4(a), the maximal prey-outbreak
amplitude (density) is 0.802, and the system experiences 6
generation and reaches the next maximal outbreak (e.g., the
first maximal outbreak lies in 1403 generation, and the next
maximal outbreak lies in 1409 generation). If we let the initial

values be (xy,y,) = (0.52,0.2), then the maximal prey-
outbreak density of system (6) is 0.956 (see Figure 4(c)), and
the attractor oscillates with period 7 (e.g., the first maximal
outbreak lies in 1402 generation, and the next maximal
outbreak lies in 1409 generation). Note that these attractors
show that they will go through three different smaller ampli-
tude outbreaks between 1402 generation and 1409 generation
(which lies in 1403, 1404, and 1408 generation, resp.).
Furthermore, there exists another attractor that tends to
infinity (i.e., the prey and predator densities eventually tend
to infinity). This attractor is very harmful for pest control.
Moreover, in this case, we can not spray insecticides and
release natural enemies to keep prey density below the ET.
The above results suggest that the control of insect pests
may depend on the initial densities of prey and predator
populations. Thus, the initial attraction regions of these stable
attractors play a pivotal role in pest management. To show
this, the basins of attraction with respect to Figure 4 coexis-
tence are given in Figure 5. It indicates that the three attractors
can coexist in various prey-predator initial densities. The
horizontal axis and the vertical axis are the prey and predator
initial values, respectively. In Figure 5(b), the initial value
ranges are 0 < x, < 2and 0 < y, < 2 and Figure 5(a) is an
enlargement of the Figure 5(a) with range 0 < x; < 1and 0 <
¥ < 1. There exists the basin of attraction for three attractors:
the magenta, yellow, and green areas. The magenta and yellow
attraction regions are related to the periodic solutions which
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(®)

FIGURE 2: Parameter bifurcation diagram for the existence of equilibria of system (6). Region I (red): Z! and Z> coexist. Region II (purple):
7! and Z2 coexist. Region III (green): Z‘l, and Z? coexist. (a) B and ET parameter space with § = 2.0 and 7 = 1. (b) 8 and 7 parameter space

with ET = 0.8 and 6 = 2.

Prey

Predator

(®)

FIGURE 3: Bifurcation diagram for system (6):The parameter values are fixed as follows: p = 0.1, 7=0.3, 0 =043, =4, a =3, § = 2.0,

and ET = 0.6.

are shown in Figures 4(a), 4(b), 4(c), and 4(d), respectively.
Moreover, the green areas correspond to attractor tending to
infinity. Thus, we conclude that the magenta and yellow area
are easy to take the integrated pest management strategies
for preventing pest (prey) outbreak according to analysis of
coexistence attractors shown in Figure 4, whereas the green
areas are very harmful for pest control. If the initial densities
of prey and predator populations fall into the green regions,
the prey and predator populations tend to infinity and can not
be controlled by the integrated pest management strategies.
Furthermore, we can find the fractal properties of the self-
similarity and fractal basin boundaries. Note that the basin
of attraction separates the attraction regions into two parts
by the line x, = ET (here ET = 0.6), which reveals that
different prey-outbreak patterns and control strategies exist

there. From pest control point of view, the integrated control
strategies may strictly depend on the initial densities of both
populations, because the different attractors have different
outbreak amplitudes and outbreak frequencies.

4. Switching Times, Switching Frequencies,
and Parameter Sensitivity

In this section, we will discuss the effects of key parameters
on the switching frequencies of system (6).

4.1. Switching Times and Switching Frequencies. For conve-
nience, we provide the definition of switching times and
switching frequencies as follows.
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FIGURE 4: Several different types of typical solutions of system (6). The parameter values are fixed as follows: p = 0.1, 7= 0.3, 0 = 0.66, 8 =
4, « =3, § = 2.0, and ET = 0.6. (a-b) The initial density of prey and predator (x,, y,) = (0.4,0.15) and (c-d) (x,, y,) = (0.52,0.2). Notice
that there exists another attractor that tends to infinity (not shown here).

Definition 4. For time series of the prey population in system
(6), if x(t) = ET and x(t + 1) < ET (or x(t) < ET and
x(t+1) > ET), then one says the system experiences one time
switch and ¢ is called switched point. The interval between
two switched points is defined as switching times N. The
switching frequencies are defined as 1/N.

The switching times and switching frequencies are critical
factors for successful pest control. If switching times (or
switching frequencies) of prey population are a constant
number with the time passing, then the system is stable,
and we can easily design the control strategy. Moreover,
the smaller the switching times (or the larger the switching
frequencies) are, the more frequently the control tactics
should be applied; that is, the pesticide applications and
releasing strategies should be implemented frequently, and
this is not effective and may result in adverse effects. On the
contrary, if the switching times and switching frequencies
are dynamic, the system is unstable or has entered a chaotic
state. What is more, it is difficult to design suitable control
measures for pest control because we do not know when and
how control strategies should be adopted.

After that, the switching frequencies are analysed with the
spectrogram, which is a visual representation of the spectrum
of frequencies in the time series of the prey population as
they vary with time. To address the effects of parameters on
switching times and switching frequencies, we let the initial
values and intrinsic growth rates « vary, as shown in Figure 6,
from which we can see that the switching frequencies have
different patterns with different initial values and intrinsic
growth rates. For example, the switching times of the prey
population are always stable when o« = 3 with the initial
density of prey and predator (x,, ¥,) = (0.4,0.15), as shown in

Figure 6(a). The corresponding spectrogram (see Figure 6(c))
confirms that the time series is periodic. Moreover, the main
frequency is about 0.165 Hz, so the switching times are about
[1/0.1666] = 6 and have consistency with Figure 4(a).
Similarly, Figure 6(b) shows that the prey population is
eventually stable, and switching frequencies are about 0.1428
(see Figure 6(e)). So the switching times is about [1/0.1428] =
7 which corresponds to Figure 4(c). However, if &« = 3.5 with
the initial density of prey and predator (x,, y,) = (0.8,0.2),
the systems is always unstable (see Figure 6(c)), and the
spectrogram (Figure 6(f)) shows the disorder frequencies.
What is more, it is difficult to design suitable control measures
for pest control because we do not know the switching times
or switching frequencies.

In order to show more details of the effects of key
parameters on switching frequencies, we first introduce the
following definition.

Definition 5. Mean switching times are the mean of all
switching times between i and i + 1999 generation; 7 is a fixed
time point.

The effects of key parameters p, ET, and « on the mean
switching times are shown in Figure 7. In Figure 7(a), the
mean switching times are analysed by varying the parameter
« (ie., a = 2,2.2,2.5,2.8,3.2) and keeping the other param-
eters constant, and five curves for different o can be got.
It shows that there is a great oscillating feature if p lies in
the interval (0.25, 0.6), and the maximum of mean switching
times also appears in this interval. It implies that the selection
of suitable p may be crucial in prolonging the pest outbreak
period. If p increases slightly from 0.6 to 1, the mean
switching times of all five curves are gradually smaller and
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FIGURE 5: Basins of attraction of four coexisting attractors of system (6); the horizontal axis and the vertical axis are the prey and predator
initial values x, and y,, respectively. (a) Basin of attraction of two periodic solutions shown in Figure 4 and one infinity solution, where the
intervals of initial values are 0 < x, < 1and 0 < y, < 1;(b) 0 < x;, < 2 and 0 < y, < 2. The other parameters are fixed the same as Figure 4.
The magenta regions represent Figures 4(a) and 4(b) attractor, the yellow regions are related to Figures 4(c) and 4(d) attractor, and the green
region represents infinity attractor.
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FIGURE 6: Switching times and switching frequencies; (a—c) switching times and (d-f) switching frequencies. The parameter values are fixed as
follows: p = 0.1, 7=0.3, 0 =0.66, f =4, § =2.0,andET = 0.6. (a,d) & = 3; the initial density of prey and predator (x,, ¥,) = (0.4, 0.15). (b,
e) « = 3; the initial density of prey and predator (x,, y,) = (0.52,0.2). (¢, f) « = 3.5; the initial density of prey and predator (x,, y,) = (0.8,0.2);
the color bar at the right tells us that the deeper red represents the frequencies where the power spectrum is highest.

became stable. Moreover, the bigger « is, the smaller themean ~ and the ET become larger; the mean switching times are
switching times are. For example, any point of the blue curve  bigger. Therefore, if we want to prolong mean switching times
(o = 2) is above the black curve (o = 3.2). In Figure 7(b), (pest outbreak period), we should let p be in the interval
the mean switching times of the prey population concerning  (0.3,0.6) and select appropriate ET. Most importantly, the
the parameter ET (i.e., ET = 0.6,0.7,0.75,0.8,0.85) are  higher the killing rate of the insecticide is, the smaller the
discussed and the other parameters are fixed. The maximum  mean switching times frequently are (i.e., the outbreak of pest
of mean switching times appear in the interval (0.3,0.6) should be broken off frequently).
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0.85,0.80,0.75,0.70, 0.60, respectively. Mean switching times are calculated between 50 and 2050 generation.

4.2. Sensitivity Analysis of Varying Parameter Values for Mean
Switching Times. To examine the sensitivity of mean switch-
ing times to parameter variation, we use Latin Hypercube
Sampling (LHS) and Partial Rank Correlation Coefficients
(PRCCs). The LHS method is a type of stratified monte carlo
sampling, which was first proposed by McKay et al. [10],
and was applied to disease transmission [11], integrated pest
management [2], HIV/AIDS epidemic [12], cellular network
dynamics [13], and systems biology [14]. We investigate the
important parameters which affect mean switching times
most significantly by using LHS and PRCCs, including the
reduction proportion of the pest population (p), the eco-
nomic threshold (ET), the increasing proportion of natural
enemies (7), the conversion ratio (3), the growth rate («), and
death rate (8). Here, the mean switching times are calculated
between 50 and 2050 generation. We performed uncertainty
and sensitivity analyses for all parameters using LHS with
3,000 samples and assumed that all parameters with wide
ranges were submitted to uniform distribution, such as p ~
U(0.1,0.3), ET ~ U(0.5,0.8), T ~ U(0.1,0.3), B ~ U(3.6,
4.1), a« ~U(1,3),and d ~ U(1.8,2.2), and the baseline values
of all parameters are given in the Figure 8.

Figure 8(a) shows the PRCC results, which illustrates
the dependence of mean switching times at each parameter,
and PRCC scatter plots for each parameter are given in
Figures 8(b)-8(g), respectively. Based on the magnitude of
the absolute value of the PRCC, we ranked the relative impor-
tance of the 3 input parameters (i.e., the mean switching
times are highly dependent on changes in the economic
threshold (ET), conversion ratio (f3), and the growth rate
(«)). Moreover, PRCC results for the mean switching times
show that the growth rate («) has the highest influence
on the results and the death rate (8) is strongly negatively
correlated with the mean switching times. On the contrary,

the economic threshold (ET) is strongly positively correlated
to the mean switching times. The positive sign of their
PRCCs indicates that if the parameters increase, the mean
switching times increase accordingly (and vice versa). That
is, the negative sign suggests that if increased, the mean
switching times decrease (and vice versa). Therefore, the
parameters ET and f3 are responsible for the increasing of the
mean switching times, so increasing all those parameters is
beneficial for prolonging pest outbreak period. This fact is
proved numerically that when ET become larger, the mean
switching times are bigger in Figure 7(b). On the other side,
increasing parameters o, p, 7, and § will lead to a more
serious pest outbreak; we should reduce negative parameters
to extend survival pest outbreak period. Figure 7(b) shows
that the bigger « is, the smaller the mean switching times are.

Figures 8(c) and 8(f) show that the ranking of relative
importance of parameters could affect the mean switching
times. For example, the economic threshold (ET) and the
growth rate («) have relatively high positive and negative
influence for pest control, respectively. Moreover, the PRCC
values for the reduction proportion of the pest population (p)
and the increasing proportion of natural enemies (7) are small
(see Figures 8(b) and 8(g)), which indicate that the killing
efficiency rate and the decay rate with respect to natural
enemies do not significantly affect the mean switching times.

4.3. Global Sensitivity Analysis of Varying Parameter by Heat
Map. PRCCs tell us how the mean switching times are
affected if we increase (or decrease) a specific parameter at
a time point (see Figure 7). Here, we focus primarily on
time-dependent global sensitivity analysis; we examine the
response of mean switching times to parameter variation
within a period of time rather than at a time point. We now
discuss how to analyse the global sensitivity by using the
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FIGURE 8: PRCC results and PRCC scatter plots. The baseline parameters are fixed as follows: p = 0.2, 7 = 0.2, § = 4, and § = 2.0, Here

we fix 0 = 0.25; initial density of prey and predator (x,, y,)
represents the PRCC value with the corresponding p value.

heat map, which is a graphical representation of data where
the individual values contained in a matrix are represented
as colors. The developed sensitivity heat map is capable of
exploring the sensitivity to many parameters simultaneously
and over time [13, 15-17]. To do this, we firstly analyse
the PRCCs of mean switching times to identify all those
generations (i.e., i is the ith generation; the ith means
switching times ranges between i and i + 1999 generations,
where i 1,2,...,150 generation); then PRCCs of all
generations are plotted in the heat map (see Figure 9(b)).
On the examination of the heat maps for the mean switching
times, we noted that ET was also strongly positive parameter
and « was the essentially negative parameter over all genera-
tions.

Specifically, in order to show the relative change in the
mean switching times over all generations, we performed a
box plot to all PRCCs for comparison (see Figure 9(a)). The
box plot is a convenient way of graphically depicting groups
of numerical data and indicated the degree of dispersion
(spread) and skewness in the data [18] and was used to
analyse the variation of the reproduction numbers to predict
the HIV/AIDS epidemic [12]. It shows that the economic

(0.2,0.2). (a) PRCC results. (b—g) PRCC scatter plots. The title of each plot

threshold (ET) and the growth rate («) have very little varia-
tion over all generations. Therefore, the economic threshold
(ET) and the growth rate («) are very more important
parameters for pest control.

5. Discussion

It is well documented that the threshold policy (or on-oft pol-
icy, switching policy) is commonly used in biological system,
which is to allow removal of the prey (pest) or increase
the predator (natural enemies), such as on-off policy in the
herbivore-vegetation dynamics [19], endogenous switching of
harvesting strategy in prey-predator fishery model [20], gause
prey-predator model with a refuge [21], and two stage pest
control models with economic thresholds [1]. In this study,
we discuss discrete-time prey-predator models by utilizing a
threshold policy (TP) to control the pest population (prey).
This switching system is divided into two subsystems, namely,
the control-free subsystem S; and controlled subsystem S .
The existence and stability of several types of equilibria of the
full switching system are discussed; the relationship between
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FIGURE 9: Mean switching times versus p; the parameter values are
fixed as follows: p = 0.1, 7 = 0.3, 0 = 0.66, 8 = 4,and § = 2.0;
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0.6 and & = 2,2.2,2.5,2.8,3.2, respectively. (b) « = 2 and ET =
0.85,0.80,0.75,0.70, 0.60, respectively.

the real and virtual equilibrium for two subsystems is showed
as in Figure 1. In order to prevent multiple pest outbreaks (i.e.,
x(t) < ET), the key parameters of equilibria of system (6)
should be analysed. The parameter bifurcation diagram for
the Equilibria in the 3 and ET parameter space and § and t
parameter space is shown as in Figure 2 respectively, which
are divided into three regions. Furthermore, the region II is
very important for pest control.

The bifurcation diagram of parameter ¢ provided the evi-
dence that the switching discrete system may have very com-
plex dynamics including coexistence of multiple attractors
among attractors (see Figure 3). To confirm the coexistence of
multiple attractors and discuss their biological implications,
Figure 4 showed that the control of insect pests may depend
on initial densities of prey and predator populations. Thus,
the initial attraction regions of these stable attractors play
a pivotal role in pest management as shown in Figure 5. It
indicates that the three attractors can coexist in various prey-
predator initial densities.

The key parameters concerning switching frequencies or
mean switching times have been analysed, and consequently
the relative biological implications with respect to pest con-
trol are discussed. If the switching frequencies and switching
times are always unstable, it is difficult to design suitable
control measures for pest control because we do not know
when and how control strategies should be adopted. In order
to show more details of the effects of key parameters on
unstable states, we first introduce the mean switching times.
The effects of key parameters p, ET, and « on the mean
switching times are shown in Figure 7. Most importantly, (i)
the bigger « is, the smaller the mean switching times are, (ii)
the higher the killing rate of the insecticide is, and the smaller
the mean switching times frequently are (i.e., the outbreak of
pest should be broken off frequently).

Discrete Dynamics in Nature and Society

To examine the sensitivity of mean switching times to
parameter variation, we used Latin Hypercube Sampling
(LHS) and partial rank correlation coefficients (PRCCs). The
results show that the economic threshold (ET) is strongly
positively correlated to the mean switching times and the
growth rate («) is strongly negatively correlated with the
mean switching times (Figures 8(b)-8(g)). The global sensi-
tivity using the heat map and PRCCs proved that economic
threshold (ET) and the growth rate («) were the key parame-
ters for pest control.

The numerical bifurcation analyses clarify that the
switching system could have very complex dynamics includ-
ing multiple attractor coexistence and chaotic solutions.
From the pest control point of view, we have carried out
extensively numerical investigations on the switching times
and their biological implications have been discussed in
more detail. The theoretical/mathematical analysis about
subsystem S;1 or S;2 has been studied extensively. Thus,
it is very important to select the corresponding parameters
for numerical investigation. In order to consider the effects
of parameter selection, the global sensitivity analysis of all
parameters has been discussed.
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