11,335 research outputs found

    Comment on "Time-Dependent Density-Matrix Renormalization Group: A Systematic Method for the Study of Quantum Many-Body Out-of- Equilibrium Systems"

    Full text link
    In a recent Letter [Phys. Rev. Lett. 88, 256403(2002), cond-mat/0109158] Cazalilla and Marston proposed a time-dependent density- matrix renormalization group (TdDMRG) algorithm for the accurate evaluation of out-of-equilibrium properties of quantum many-body systems. For a point contact junction between two Luttinger liquids, a current oscillation develops after initial transient in the insulating regime. Here we would like to point out that (a) the observed oscillation is an artifact of the method; (b) the TdDMRG can be significantly improved by incorporating the non-equilibrium evolution of the goundstate into the density matrix.Comment: 1 page, 2 figure

    An Isolated Resonant Mode Modular Converter with Flexible Modulation and Variety of Configurations for MVDC Application

    Get PDF
    The dc tap or dc transformer will play an important role in interfacing different voltages of dc links in dc grids. This paper presents an isolated resonant mode modular converter (RMMC) with flexible modulation and assorted configurations to satisfy a wide variety of interface requirements for medium voltage dc (MVDC) networks. The transformer-less RMMC, as introduced in the literature, implemented a restricted modulation scheme leading to a very limited range of step-ratio and the diode rectifier resulted in unidirectional power flow. Both of these limitations are removed in this proposal and galvanic isolation has also been added. Moreover, this new RMMC approach can serve as a building block for variety of configurations. Two such derived topologies are given, which inherently balance the voltage and current between different constituent circuits and realize the high power rating conversion for very low or very high step-ratio application. The theoretical analysis is validated by a set of full-scale simulations and a down-scaled experimental prototype. The results illustrate that this isolated RMMC and its derivatives have promising features for dc taps or dc transformers in MVDC applications

    A compact modular multilevel DC-DC converter for high step-ratio MV and HV use

    Get PDF
    In multi-terminal dc networks or future dc grids, there is an important role for high step-ratio dc-dc conversion to interface a high voltage network to lower voltage infeeds or offtakes. The efficiency and controllability of dc-dc conversion will be expected to be similar to modular multi-level ac-dc converters. This paper presents a modular multilevel dc-dc converter with a high step-ratio for medium voltage and high voltage applications. Its topology on high-voltage side is derived from the half-bridge single-phase inverter with stacks of sub-modules replacing each of the switch positions. A near-square-wave current operation is proposed which achieves near-constant instantaneous power for single-phase conversion, leading to reduced stack capacitor and filter volume and also increased the power device utilization. A controller for energy balancing and current tracking is designed. The soft-switching operation on the low-voltage side is demonstrated. The high step-ratio is accomplished by combination of inherent half-bridge ratio, sub-module stack modulation and transformer turns-ratio, which also offers flexibility to satisfy wide-range conversion requirement. The theoretical analysis of this converter is verified by simulation of a full-scale 40MW, 200 kV converter with 146 sub-modules and also through experimental testing of a down-scaled prototype at 4.5 kW, 1.5 kV with 18 sub-modules

    Trapezoidal Current Modulation for Bidirectional High-Step-Ratio Modular DC–DC Converters

    Get PDF
    Modular dc-dc converter (MDCC) has been proposed for high step-ratio interconnection in dc grid applications. To further optimize the performance of MDCC, this paper presents a trapezoidal current modulation with bidirectional power flow ability. By giving all the sub-module (SM) capacitors an equal duty to withstand the stack dc voltage, their voltages are balanced without additional feedback control. Moreover, based on soft-switching performance and circulating current analysis, three-level and two-level operation modes featured with high efficiency conversion and large power transmission, respectively, are introduced. The control schemes of both modes are designed to minimize the conduction losses. Besides, the SM capacitor voltage ripples with different switching patterns are compared and the option for ripple minimization is presented. A full-scale case study is provided to introduce the design process and device selection of the MDCC. The experimental tests based on a downscaled prototype are finally presented to validate the theoretical analysis

    Optical and magnetic properties of Ni nanoparticles in rutile formed by Ni ion implantation

    Full text link
    Crystalline Ni nanoparticles in the near surface of TiO2TiO2 (rutile) have been synthesized by Ni ion beam implantation at room temperature to a fluence of 1×1017/cm21×1017∕cm2. Transmission electron microscopy, optical absorption spectroscopy, and a superconducting quantum interference device magnetometer have been utilized to characterize the nanostructure, optical and magnetic properties of Ni particles in TiO2TiO2. Crystalline Ni nanoparticles with dimensions ranging 3–20 nm formed in the near surface of rutile, which caused a broad absorption band from 700 nm in the optical absorption spectrum. Magnetic measurement indicated that the coercive force of Ni nanoparticles was about 210 Oe at 10 K. The superparamagnetism of the nanoparticles was observed above blocking temperature T = 85 KT=85K.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87774/2/043107_1.pd

    Large step ratio input-series-output-parallel chain-link DC-DC converter

    Get PDF
    High-voltage and high-power dc-dc conversion is key to dc transmission, distribution and generation, which require compact and efficient dc transformers with large step ratios. This paper introduces a dc-dc converter with the input-series-output-parallel (ISOP) arrangement of multiple high step ratio sub-converter units. Each sub-converter unit is an isolated modular dcdc converter with a stack of half-bridge cells chopping the dc down to low voltage level. The transformer provides galvanic isolation and additional step ratio. The converter achieves a large step ratio due to the combination of the series-parallel configuration, the modular cells, and the isolation transformer. The proposed dc-dc converter is analyzed in a 30 kV to 1 kV, 1 MW application to discuss the operation performance, trade-offs, power efficiency and selection of components. Finally, the converter is validated through a laboratory down-scaled prototype

    Metamagnetic Transition in Na0.85_{0.85}CoO2_2 Single Crystals

    Full text link
    We report the magnetization, specific heat and transport measurements of high quality Na0.85_{0.85}CoO2_2 single crystals in applied magnetic fields up to 14T. In high temperatures, the system is in a paramagnetic phase. It undergoes a magnetic phase transition below about 20K. When the field is applied along the c-axis, the measurement data of magnetization, specific heat and magnetoresistance reveal a metamagnetic transition from an antiferromagnetic state to a quasi-ferromagnetic state at about 8T in low temperatures. However, no transition is observed in the magnetization measurements up to 14T when the field is applied perpendicular to the c-axis. The low temperature magnetic phase diagram of Na0.85_{0.85}CoO2_2 is determined.Comment: 4 pages, 5 figure
    • …
    corecore