4,547 research outputs found

    Long-Time Behavior of Quasilinear Thermoelastic Kirchhoff-Love Plates with Second Sound

    Get PDF
    We consider an initial-boundary-value problem for a thermoelastic Kirchhoff & Love plate, thermally insulated and simply supported on the boundary, incorporating rotational inertia and a quasilinear hypoelastic response, while the heat effects are modeled using the hyperbolic Maxwell-Cattaneo-Vernotte law giving rise to a 'second sound' effect. We study the local well-posedness of the resulting quasilinear mixed-order hyperbolic system in a suitable solution class of smooth functions mapping into Sobolev HkH^{k}-spaces. Exploiting the sole source of energy dissipation entering the system through the hyperbolic heat flux moment, provided the initial data are small in a lower topology (basic energy level corresponding to weak solutions), we prove a nonlinear stabilizability estimate furnishing global existence & uniqueness and exponential decay of classical solutions.Comment: 46 page

    Fusion of Urban TanDEM-X raw DEMs using variational models

    Get PDF
    Recently, a new global Digital Elevation Model (DEM) with pixel spacing of 0.4 arcseconds and relative height accuracy finer than 2m for flat areas (slopes 20%) was created through the TanDEM-X mission. One important step of the chain of global DEM generation is to mosaic and fuse multiple raw DEM tiles to reach the target height accuracy. Currently, Weighted Averaging (WA) is applied as a fast and simple method for TanDEM-X raw DEM fusion in which the weights are computed from height error maps delivered from the Interferometric TanDEM-X Processor (ITP). However, evaluations show that WA is not the perfect DEM fusion method for urban areas especially in confrontation with edges such as building outlines. The main focus of this paper is to investigate more advanced variational approaches such as TV-L1 and Huber models. Furthermore, we also assess the performance of variational models for fusing raw DEMs produced from data takes with different baseline configurations and height of ambiguities. The results illustrate the high efficiency of variational models for TanDEM-X raw DEM fusion in comparison to WA. Using variational models could improve the DEM quality by up to 2m particularly in inner-city subsets.Comment: This is the pre-acceptance version, to read the final version, please go to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing on IEEE Xplor

    Towards Automatic SAR-Optical Stereogrammetry over Urban Areas using Very High Resolution Imagery

    Full text link
    In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established handcrafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. Keywords: Synthetic Aperture Radar (SAR), optical images, remote sensing, data fusion, stereogrammetr

    Observation of topological transition of Fermi surface from a spindle-torus to a torus in large bulk Rashba spin-split BiTeCl

    Get PDF
    The recently observed large Rashba-type spin splitting in the BiTeX (X = I, Br, Cl) bulk states due to the absence of inversion asymmetry and large charge polarity enables observation of the transition in Fermi surface topology from spindle-torus to torus with varying the carrier density. These BiTeX systems with high spin-orbit energy scales offer an ideal platform for achieving practical spintronic applications and realizing non-trivial phenomena such as topological superconductivity and Majorana fermions. Here we use Shubnikov-de Haas oscillations to investigate the electronic structure of the bulk conduction band of BiTeCl single crystals with different carrier densities. We observe the topological transition of the Fermi surface (FS) from a spindle-torus to a torus. The Landau level fan diagram reveals the expected non-trivial {\pi} Berry phase for both the inner and outer FSs. Angle-dependent oscillation measurements reveal three-dimensional FS topology when the Fermi level lies in the vicinity of the Dirac point. All the observations are consistent with large Rashba spin-orbit splitting in the bulk conduction band.Comment: 28 pages, supplementary informatio

    A Framework for SAR-Optical Stereogrammetry over Urban Areas

    Get PDF
    Currently, numerous remote sensing satellites provide a huge volume of diverse earth observation data. As these data show different features regarding resolution, accuracy, coverage, and spectral imaging ability, fusion techniques are required to integrate the different properties of each sensor and produce useful information. For example, synthetic aperture radar (SAR) data can be fused with optical imagery to produce 3D information using stereogrammetric methods. The main focus of this study is to investigate the possibility of applying a stereogrammetry pipeline to very-high-resolution (VHR) SAR-optical image pairs. For this purpose, the applicability of semi-global matching is investigated in this unconventional multi-sensor setting. To support the image matching by reducing the search space and accelerating the identification of correct, reliable matches, the possibility of establishing an epipolarity constraint for VHR SAR-optical image pairs is investigated as well. In addition, it is shown that the absolute geolocation accuracy of VHR optical imagery with respect to VHR SAR imagery such as provided by TerraSAR-X can be improved by a multi-sensor block adjustment formulation based on rational polynomial coefficients. Finally, the feasibility of generating point clouds with a median accuracy of about 2m is demonstrated and confirms the potential of 3D reconstruction from SAR-optical image pairs over urban areas.Comment: This is the pre-acceptance version, to read the final version, please go to ISPRS Journal of Photogrammetry and Remote Sensing on ScienceDirec

    Multi-level Feature Fusion-based CNN for Local Climate Zone Classification from Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset

    Get PDF
    As a unique classification scheme for urban forms and functions, the local climate zone (LCZ) system provides essential general information for any studies related to urban environments, especially on a large scale. Remote sensing data-based classification approaches are the key to large-scale mapping and monitoring of LCZs. The potential of deep learning-based approaches is not yet fully explored, even though advanced convolutional neural networks (CNNs) continue to push the frontiers for various computer vision tasks. One reason is that published studies are based on different datasets, usually at a regional scale, which makes it impossible to fairly and consistently compare the potential of different CNNs for real-world scenarios. This study is based on the big So2Sat LCZ42 benchmark dataset dedicated to LCZ classification. Using this dataset, we studied a range of CNNs of varying sizes. In addition, we proposed a CNN to classify LCZs from Sentinel-2 images, Sen2LCZ-Net. Using this base network, we propose fusing multi-level features using the extended Sen2LCZ-Net-MF. With this proposed simple network architecture and the highly competitive benchmark dataset, we obtain results that are better than those obtained by the state-of-the-art CNNs, while requiring less computation with fewer layers and parameters. Large-scale LCZ classification examples of completely unseen areas are presented, demonstrating the potential of our proposed Sen2LCZ-Net-MF as well as the So2Sat LCZ42 dataset. We also intensively investigated the influence of network depth and width and the effectiveness of the design choices made for Sen2LCZ-Net-MF. Our work will provide important baselines for future CNN-based algorithm developments for both LCZ classification and other urban land cover land use classification
    • …
    corecore