15,333 research outputs found
Superconductivity mediated by the antiferromagnetic spin-wave in chalcogenide iron-base superconductors
The ground state of KFeSe and other iron-based
selenide superconductors are doped antiferromagnetic semiconductors. There are
well defined iron local moments whose energies are separated from those of
conduction electrons by a large band gap in these materials. We propose that
the low energy physics of this system is governed by a model Hamiltonian of
interacting electrons with on-site ferromagnetic exchange interactions and
inter-site superexchange interactions. We have derived the effective pairing
potential of electrons under the linear spin-wave approximation and shown that
the superconductivity can be driven by mediating coherent spin wave excitations
in these materials. Our work provides a natural account for the coexistence of
superconducting and antiferromagnetic long range orders observed by neutron
scattering and other experiments.Comment: 4 pages, 3 figure
Entanglement-enhanced measurement of a completely unknown phase
The high-precision interferometric measurement of an unknown phase is the
basis for metrology in many areas of science and technology. Quantum
entanglement provides an increase in sensitivity, but present techniques have
only surpassed the limits of classical interferometry for the measurement of
small variations about a known phase. Here we introduce a technique that
combines entangled states with an adaptive algorithm to precisely estimate a
completely unspecified phase, obtaining more information per photon that is
possible classically. We use the technique to make the first ab initio
entanglement-enhanced optical phase measurement. This approach will enable
rapid, precise determination of unknown phase shifts using interferometry.Comment: 6 pages, 4 figure
Demonstration of Temporal Distinguishability in a Four-Photon State and a Six-Photon State
An experiment is performed to demonstrate the temporal distinguishability of
a four-photon state and a six-photon state, both from parametric
down-conversion. The experiment is based on a multi-photon interference scheme
in a recent discovered NOON-state projection measurement. By measuring the
visibility of the interference dip, we can distinguish the various scenarios in
the temporal distribution of the pairs and thus quantitatively determine the
degree of temporal (in)distinguishability of a multi-photon state
The release of dormancy, a wake-up call for seeds to germinate
Seed dormancy determines the timing of germination, thereby contributing to successful seedling establishment and plant fitness. The induction and release of dormancy are controlled by various regulators like plant hormones and dormancy proteins. The relative strengths of these regulators are influenced by environmental factors during seed maturation and storage. In the last few years additional processes have been identified to be involved in the release of dormancy during seed storage with an important role for non-enzymatic oxidative reactions. However, the relations between the different dormancy regulators are not fully understood yet. Finally, all accumulated information will be processed in the seed during early seed imbibition and lead to the decision to germinate or not
HST and LAMOST discover a dual active galactic nucleus in J0038+4128
We report the discovery of a kiloparsec-scale dual active galactic nucleus
(AGN) in J0038+4128. From the Hubble Space Telescope (HST) Wide Field Planetary
Camera (WFPC2) images, we find two optical nuclei with a projection separation
of 4.7 kpc (3.44 arcsec). The southern component (J0038+4128S) is
spectroscopically observed with the HST Goddard High Resolution Spectrograph in
the UV range and is found to be a Seyfert 1 galaxy with a broad Ly alpha
emission line. The northern component (J0038+4128N) is spectroscopically
observed during the Large Sky Area Multi-Object Fibre Spectroscopic Telescope
(also named the Guoshoujing Telescope) pilot survey in the optical range. The
observed line ratios as well as the consistency of redshift of the nucleus
emission lines and the host galaxy's absorption lines indicate that J0038+4128N
is a Seyfert 2 galaxy with narrow lines only. These results thus confirm that
J0038+4128 is a Seyfert 1-Seyfert 2 AGN pair. The HST WFPC2 F336W/U-band image
of J0038+4128 also reveals for the first time for a dual AGN system two pairs
of bi-symmetric arms, as are expected from the numerical simulations of such
system. Being one of a few confirmed kiloparsec-scale dual AGNs exhibiting a
clear morphological structure of the host galaxies, J0038+4128 provides an
unique opportunity to study the co-evolution of the host galaxies and their
central supermassive black holes undergoing a merging process.Comment: 6 pages, 4 figures, 2 tables, Accepted for publication in MNRAS
Letter
Effect of bilayer coupling on tunneling conductance of double-layer high T_c cuprates
Physical effects of bilayer coupling on the tunneling spectroscopy of high
T cuprates are investigated. The bilayer coupling separates the bonding
and antibonding bands and leads to a splitting of the coherence peaks in the
tunneling differential conductance. However, the coherence peak of the bonding
band is strongly suppressed and broadened by the particle-hole asymmetry in the
density of states and finite quasiparticle life-time, and is difficult to
resolve by experiments. This gives a qualitative account why the bilayer
splitting of the coherence peaks was not clearly observed in tunneling
measurements of double-layer high-T oxides.Comment: 4 pages, 3 figures, to be published in PR
- …