1,006 research outputs found

    Optimal Quantization in Energy-Constrained Sensor Networks under Imperfect Transmission

    Get PDF
    This paper addresses the optimization of quantization at local sensors under strict energy constraint and imperfect transmission to improve the reconstruction performance at the fusion center in the wireless sensor networks (WSNs). We present optimized quantization scheme including the optimal quantization bit rate and the optimal transmission power allocation among quantization bits for BPSK signal and binary orthogonal signal with envelope detection, respectively. The optimization of the quantization is formulated as a convex problem and the optimal solution is derived analytically in both cases. Simulation results demonstrate the effectiveness of our proposed quantization schemes

    Bis{2-[(1H-pyrrol-2-yl)methyl­imino­meth­yl]phenolato-κ2 N,O}zinc(II)

    Get PDF
    In the title compound, [Zn(C12H11N2O)2], the ZnII atom, lying on an inversion center, is coordinated by two O atoms and two N atoms from two salicylal Schiff base ligands in a distorted square-planar geometry. A three-dimensional network is formed by inter­molecular C—H⋯N hydrogen bonds and C—H⋯π contacts

    Aqua­bis(5-methyl­pyrazine-2-carboxyl­ato)zinc(II) trihydrate

    Get PDF
    In the title compound, [Zn(C6H5N2O2)2(H2O)]·3H2O, the ZnII centre is five-coordinated by two O,N-bidentate Schiff base ligands and one O atom from a water mol­ecule in a slightly distorted square-pyramidal geometry. In the crystal, the complex and uncoordinated water mol­ecules are linked by O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional network

    Bis(2-cyclo­hexyl­imino­methyl-4,6-dihydro­seleno­phenolato)cobalt(II) acetonitrile solvate

    Get PDF
    In the title compound, [Co(C13H16NOSe2)2]·CH3CN, the CoII atom is four-coordinated by two N,O-bidentate Schiff base ligands, resulting in a distorted tetra­hedral coordination for the metal ion

    Aqua­azido­{3,3′-[o-phenyl­enebis(nitrilo­methyl­idyne)]di-2-naphtholato}manganese(III)

    Get PDF
    In the title complex, [Mn(C28H18N2O2)(N3)(H2O)], the MnIII ion adopts a distorted fac-MnO3N3 octa­hedral geometry arising from the O,N,N′,O′-tetra­dentate Schiff base ligand, an azide ion and a water mol­ecule. In the crystal, inter­molecular O—H⋯(O,O) and O—H⋯N hydrogen bonds and π–π inter­actions [centroid–centroid separation = 3.5535 (13) Å] link the mol­ecules into chains

    The value of high-flow nasal cannula oxygen therapy after extubation in patients with acute respiratory failure

    Get PDF
    OBJECTIVE: To investigate the value of high-flow nasal cannula oxygen therapy after extubation in patients with acute respiratory failure. METHODS: A single-center, prospective, randomized, controlled pilot trial was conducted between January 2013 and December 2014. Sixty enrolled patients were randomized immediately after extubation into either a high-flow nasal cannula group (n=30) or an air entrainment mask group (n=30) at a fixed inspired oxygen fraction (40%). The success rate of oxygen therapy, respiratory and hemodynamic parameters and subjective discomfort (using a visual analogue scale) were assessed at 24h after extubation. RESULTS: The two groups were comparable at extubation. A total of 46 patients were successfully treated including 27 patients in the high-flow nasal cannula group and 19 patients in the air entrainment mask group. Compared to the air entrainment mask group, the success rate of oxygen therapy and the partial pressure of arterial oxygen were significantly higher and the respiratory rate was lower in the high-flow nasal cannula group. In addition, less discomfort related to interface displacement and airway dryness was observed in the high-flow nasal cannula group than in the air entrainment mask group. CONCLUSIONS: At a fixed inspired oxygen fraction, the application of a high-flow nasal cannula after extubation achieves a higher success rate of oxygen therapy and less discomfort at 24h than an air entrainment mask in patients with acute respiratory failure

    PV2TEA: Patching Visual Modality to Textual-Established Information Extraction

    Full text link
    Information extraction, e.g., attribute value extraction, has been extensively studied and formulated based only on text. However, many attributes can benefit from image-based extraction, like color, shape, pattern, among others. The visual modality has long been underutilized, mainly due to multimodal annotation difficulty. In this paper, we aim to patch the visual modality to the textual-established attribute information extractor. The cross-modality integration faces several unique challenges: (C1) images and textual descriptions are loosely paired intra-sample and inter-samples; (C2) images usually contain rich backgrounds that can mislead the prediction; (C3) weakly supervised labels from textual-established extractors are biased for multimodal training. We present PV2TEA, an encoder-decoder architecture equipped with three bias reduction schemes: (S1) Augmented label-smoothed contrast to improve the cross-modality alignment for loosely-paired image and text; (S2) Attention-pruning that adaptively distinguishes the visual foreground; (S3) Two-level neighborhood regularization that mitigates the label textual bias via reliability estimation. Empirical results on real-world e-Commerce datasets demonstrate up to 11.74% absolute (20.97% relatively) F1 increase over unimodal baselines.Comment: ACL 2023 Finding

    Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells

    Get PDF
    Dynamic analysis of viral nucleic acids in host cells is important for understanding virus–host interaction. By labeling endogenous RNA with molecular beacon, we have realized the direct visualization of viral nucleic acids in living host cells and have studied the dynamic behavior of poliovirus plus-strand RNA. Poliovirus plus-strand RNA was observed to display different distribution patterns in living Vero cells at different post-infection time points. Real-time imaging suggested that the translocation of poliovirus plus-strand RNA is a characteristic rearrangement process requiring intact microtubule network of host cells. Confocal-FRAP measurements showed that 49.4 ± 3.2% of the poliovirus plus-strand RNA molecules diffused freely (with a D-value of 9.6 ± 1.6 × 10(−10) cm(2)/s) within their distribution region, while the remaining (50.5 ± 2.9%) were almost immobile and moved very slowly only with change of the RNA distribution region. Under the electron microscope, it was found that virus-induced membrane rearrangement is microtubule-associated in poliovirus-infected Vero cells. These results reveal an entrapment and diffusion mechanism for the movement of poliovirus plus-strand RNA in living mammalian cells, and demonstrate that the mechanism is mainly associated with microtubules and virus-induced membrane structures
    corecore