40,695 research outputs found

    Longitudinal excitations in quantum antiferromagnets

    Full text link
    By extending our recently proposed magnon-density-waves to low dimensions, we investigate, using a microscopic many-body approach, the longitudinal excitations of the quasi-one-dimensional (quasi-1d) and quasi-2d Heisenberg antiferromagnetic systems on a bipartite lattice with a general spin quantum number. We obtain the full energy spectrum of the longitudinal mode as a function of the coupling constants in the original lattice Hamiltonian and find that it always has a non-zero energy gap if the ground state has a long-range order and becomes gapless for the pure isotropic 1d model. The numerical value of the minimum gap in our approximation agrees with that of a longitudinal mode observed in the quasi-1d antiferromagnetic compound KCuF3{}_3 at low temperature. It will be interesting to compare values of the energy spectrum at other momenta if their experimental results are available.Comment: 19 pages, 4 figure

    On non-linear CMB temperature anisotropy from gravitational perturbations

    Full text link
    Non-linear CMB temperature anisotropies up to the third-order on large scales are calculated. On large scales and in the Sachs-Wolfe limit, we give the explicit expression for the observed temperature anisotropy in terms of the primordial curvature perturbation up to the third-order. We derived the final bispectrum and trispectrum of anisotropies and the corresponding non-linear parameters, in which the contributions to the observed non-Gaussianity from primordial perturbations and from the non-linear mapping from primordial curvature perturbation to the temperature anisotropy are transparently separated.Comment: 11 pages, 2 figure

    Coupling structure of multi-field primordial perturbations

    Full text link
    We investigate the coupling relations among perturbations in general multi-field models. We derived the equations of motion for both background and perturbations in a general basis. Within this formalism, we revisit the construction of kinematic orthogonal normal vectors using the successive time derivatives of the background field velocity. We show that the coupling relations among modes in this kinematic basis can be reduced, by employing the background equations of motion for the scalar fields and their high order time derivatives. There are two typical features in the field space: inflationary trajectory and geometry of the potential. Correspondingly, the couplings among modes fall into two categories: one is controlled only by the kinematic quantities, the other involves high order derivatives of the potential. Remarkably, the couplings of the first category, i.e. controlled by the kinematic quantities only, show a "chain" structure. That is, each mode is only coupled to its two neighbour modes.Comment: 20 pages, 1 figur
    corecore