1,651 research outputs found

    A flexible and adaptive Simpler GMRES with deflated restarting for shifted linear systems

    Get PDF
    In this paper, two efficient iterative algorithms based on the simpler GMRES method are proposed for solving shifted linear systems. To make full use of the shifted structure, the proposed algorithms utilizing the deflated restarting strategy and flexible preconditioning can significantly reduce the number of matrix-vector products and the elapsed CPU time. Numerical experiments are reported to illustrate the performance and effectiveness of the proposed algorithms.Comment: 17 pages. 9 Tables, 1 figure; Newly update: add some new numerical results and correct some typos and syntax error

    A note on the growth factor in Gaussian elimination for generalized Higham matrices

    Full text link
    The Higham matrix is a complex symmetric matrix A=B+iC, where both B and C are real, symmetric and positive definite and i=−1\mathrm{i}=\sqrt{-1} is the imaginary unit. For any Higham matrix A, Ikramov et al. showed that the growth factor in Gaussian elimination is less than 3. In this paper, based on the previous results, a new bound of the growth factor is obtained by using the maximum of the condition numbers of matrixes B and C for the generalized Higham matrix A, which strengthens this bound to 2 and proves the Higham's conjecture.Comment: 8 pages, 2 figures; Submitted to MOC on Dec. 22 201

    Restarted Hessenberg method for solving shifted nonsymmetric linear systems

    Get PDF
    It is known that the restarted full orthogonalization method (FOM) outperforms the restarted generalized minimum residual (GMRES) method in several circumstances for solving shifted linear systems when the shifts are handled simultaneously. Many variants of them have been proposed to enhance their performance. We show that another restarted method, the restarted Hessenberg method [M. Heyouni, M\'ethode de Hessenberg G\'en\'eralis\'ee et Applications, Ph.D. Thesis, Universit\'e des Sciences et Technologies de Lille, France, 1996] based on Hessenberg procedure, can effectively be employed, which can provide accelerating convergence rate with respect to the number of restarts. Theoretical analysis shows that the new residual of shifted restarted Hessenberg method is still collinear with each other. In these cases where the proposed algorithm needs less enough CPU time elapsed to converge than the earlier established restarted shifted FOM, weighted restarted shifted FOM, and some other popular shifted iterative solvers based on the short-term vector recurrence, as shown via extensive numerical experiments involving the recent popular applications of handling the time fractional differential equations.Comment: 19 pages, 7 tables. Some corrections for updating the reference
    • …
    corecore