5 research outputs found

    Genome-wide identiļ¬cation and analysis of heterotic loci in three maize hybrids

    Get PDF
    Heterosis, or hybrid vigour, is a predominant phenomenon in plant genetics, serving as the basis of crop hybrid breeding, but the causative loci and genes underlying heterosis remain unclear in many crops. Here, we present a large-scale genetic analysis using 5360 offsprings from three elite maize hybrids, which identiļ¬es 628 loci underlying 19 yield-related traits with relatively high mapping resolutions. Heterotic pattern investigations of the 628 loci show that numerous loci, mostly with completeā€“incomplete dominance (the major one) or overdominance effects (the secondary one) for heterozygous genotypes and nearly equal proportion of advantageous alleles from both parental lines, are the major causes of strong heterosis in these hybrids. Follow-up studies for 17 heterotic loci in an independent experiment using 2225 F2 individuals suggest most heterotic effects are roughly stable between environments with a small variation. Candidate gene analysis for one major heterotic locus (ub3) in maize implies that there may exist some common genes contributing to crop heterosis. These results provide a community resource for genetics studies in maize and new implications for heterosis in plants

    B-14 DNA analysis of White Headed Langur and feeding plants.

    Get PDF

    Energy Balance-Based SWAT Model to Simulate the Mountain Snowmelt and Runoff ā€” Taking the Application in Juntanghu Watershed (China) as an Example

    No full text
    In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool (SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the TianShan Mountains, Xinjiang, China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example (as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency (NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to 0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. The structure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired

    Study on the Accumulated Temperature Distribution Model of Snowmelt Flood Magnitude from the Perspective of Ecological Environmental Protection of Mountain Areas

    No full text
    Mountain flood that causes landslide and other geological disasters can damage the fragile ecological environment in mountain areas. In this paper, threshold and distribution model of accumulated temperature based on snowmelt flood magnitude are designed in mountainous watershed. Meanwhile, input data for this model make use of ample reliable data that include remote sensing and so on. In detail, this model simulates the average watershed temperature by using the meteorologic re-analysis data of the National Center for Atmospheric Research and calculates the average snow depth by using hyperspectral remote sensing data. In addition, the model related data comprise long-term observation experiments of the watershed, including the characteristics of accumulated snow and result of correlation between runoff and infiltration in runoff simulation experiment through distributed hydrological models (i.e., Soil and Water Assessment Tool and Distributed Hydrology Soil Vegetation Model). Finally, the average accumulated temperature of the watershed that causes snowmelt flood can be obtained through the aforementioned method, and the characteristics of the accumulated temperature distribution of the watershed area are determined based on the temperature lapse rate. The characteristics of accumulated temperature distribution can provide decision-making reference for monitoring the ecological environment in mountain areas and preventing and reducing disasters

    Genome-wide identiļ¬cation and analysis of heterotic loci in three maize hybrids

    Get PDF
    Heterosis, or hybrid vigour, is a predominant phenomenon in plant genetics, serving as the basis of crop hybrid breeding, but the causative loci and genes underlying heterosis remain unclear in many crops. Here, we present a large-scale genetic analysis using 5360 offsprings from three elite maize hybrids, which identiļ¬es 628 loci underlying 19 yield-related traits with relatively high mapping resolutions. Heterotic pattern investigations of the 628 loci show that numerous loci, mostly with completeā€“incomplete dominance (the major one) or overdominance effects (the secondary one) for heterozygous genotypes and nearly equal proportion of advantageous alleles from both parental lines, are the major causes of strong heterosis in these hybrids. Follow-up studies for 17 heterotic loci in an independent experiment using 2225 F2 individuals suggest most heterotic effects are roughly stable between environments with a small variation. Candidate gene analysis for one major heterotic locus (ub3) in maize implies that there may exist some common genes contributing to crop heterosis. These results provide a community resource for genetics studies in maize and new implications for heterosis in plants
    corecore