20,696 research outputs found

    Simulation of Three-Dimensional Free-Surface Dam-Break Flows over a Cuboid, Cylinder, and Sphere

    Get PDF
    A three-dimensional (3D) numerical study is undertaken to investigate dam-break flows over 3D structures. A two-phase flow model has been developed within the large-eddy simulation (LES) framework. The governing equations have been discretized using the finite-volume method, with the air-water interface being captured using a volume-of-fluid method while the Cartesian cut-cell method deals with complex geometries. The robustness and versatility of the proposed numerical approach are demonstrated first by applying it to a 3D dam-break flow over a cuboid. Good agreement is obtained between the simulation results and the corresponding experimental data and other numerical solutions. Then, a horizontal cylinder and a sphere are subjected to the same dam-break flow. Snapshots of water surface profiles are presented and discussed, and turbulent vortical structures are identified in the flow. In addition, the internal kinematics, hydrodynamic loading on the structure, and energy dissipation during dam-break flow impact are analyzed and discussed, providing more insight into such flows

    Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals

    Full text link
    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra and transition rates in fourteen isotopic chains: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu, Cm, Cf, and Fm, are systematically analyzed using a theoretical framework based on a quadrupole-octupole collective Hamiltonian (QOCH), with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations. The microscopic QOCH model based on the PC-PK1 energy density functional and δ\delta-interaction pairing is shown to accurately describe the empirical trend of low-energy quadrupole and octupole collective states, and predicted spectroscopic properties are consistent with recent microscopic calculations based on both relativistic and non-relativistic energy density functionals. Low-energy negative-parity bands, average octupole deformations, and transition rates show evidence for octupole collectivity in both mass regions, for which a microscopic mechanism is discussed in terms of evolution of single-nucleon orbitals with deformation.Comment: 36 pages, 21 figures, Accepted for Publication in Physical Review

    Ischaemic post-conditioning protects lung from ischaemia-reperfusion injury by up-regulation of haeme oxygenase-1

    Get PDF
    Objective: The emergence of ischaemic post-conditioning (IPO) provides a potential method for experimentally and clinically attenuating various types of organ injuries. There has been little work, however, examining its effects in the setting of lung ischaemia reperfusion (IR). The stress protein, haeme oxygenase-1 (HO-1), has been found to exert a potent, protective role in a variety of lung injury models. In this study, we hypothesised that the induction of HO-1 by IPO plays a protective role against the deleterious effects of IR in the lung. Methods: Anaesthetised and mechanically ventilated adult Sprague-Dawley rats were randomly assigned to one of the following groups (n = 8 each): the sham-operated control group, the IR group (40 min of left-lung ischaemia and 105 min of reperfusion), the IPO group (three successive cycles of 30-s reperfusion per 30-s occlusion before restoring full perfusion) and the ZnPPIX + IPO group (ZnPPIX, an inhibitor of HO-1, was injected intra-peritoneally at 20 mg kg -1 24 h prior to the experiment and the rest of the procedures were similar to that of the IPO group). Lung injury was assessed by arterial blood gas analysis, wet-to-dry lung weight ratio and tissue histological changes. The extent of lipid peroxidation was determined by measuring plasma levels of malondialdehyde (MDA) production. Expression of HO-1 was determined by immunohistochemistry. Results: Lung IR resulted in a significant reduction of PaO 2 (data in IR, P < 0.05 vs. data in sham) and increase of lung wet-to-dry weight ratio, accompanied with increased MDA production and severe lung pathological morphological changes as well as a compensatory increase in HO-1 protein expression, as compared with sham (All P < 0.05). IPO markedly attenuated all the above pathological changes seen in the IR group and further increased HO-1 expression. Treatment with ZnPPIX abolished all the protective effects of post-conditioning. Conclusion: It may be concluded that IPO protects IR-induced lung injury via induction of HO-1. © 2009 Elsevier Ltd. All rights reserved.postprin

    A review of the alumina recovery from coal fly ash, with a focus in China

    Get PDF
    Coal fly ash, an industrial by-product, is derived from coal combustion in thermal power plants. It is one of the most complex and abundant of anthropogenic materials and its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. Coal fly ash is rich in alumina making it a potential substitute for bauxite. With the diminishing reserves of bauxite resources as well as the increasing demand for alumina, recovering alumina from fly ash has attracted extensive attentions. The present review first describes the alumina recovery history and technologies, and then focuses on the recovery status in China. Finally, the current status of fly ash recycling and directions for future research are considered

    Spectroscopic Properties of QSOs Selected from Ultraluminous Infrared Galaxy Samples

    Full text link
    We performed spectroscopic observations for a large infrared QSO sample with a total of 25 objects. The sample was compiled from the QDOT redshift survey, the 1 Jy ULIRGs survey and a sample obtained by a cross-correlation study of the IRAS Point Source Catalogue with the ROSAT All Sky Survey Catalogue. Statistical analyses of the optical spectra show that the vast majority of infrared QSOs have narrow permitted emission lines (with FWHM of Hbeta less than 4000 km/s) and more than 60% of them are luminous narrow line Seyfert 1 galaxies. Two of the infrared QSOs are also classified as low ionization BAL QSOs. More than 70% of infrared QSOs are moderately or extremely strong Fe II emitters. This is the highest percentage of strong Fe II emitters in all subclasses of QSO/Seyfert 1 samples. We found that the Fe II to Hbeta, line ratio is significantly correlated with the [OIII]5007 peak and Hbeta blueshift. Soft X-ray weak infrared QSOs tend to have large blueshifts in permitted emission lines and significant Fe II48,49 (5100--5400 A) residuals relative to the Boroson & Green Fe II template. If the blueshifts in permitted lines are caused by outflows, then they appear to be common in infrared QSOs. As the infrared-selected QSO sample includes both luminous narrow line Seyfert 1 galaxies and low ionization BAL QSOs, it could be a useful laboratory to investigate the evolutionary connection among these objects.Comment: 35 pages,14 figures, 4 tables, accepted for publication in A

    A CrC^{r} Closing Lemma for a Class of Symplectic Diffeomorphisms

    Full text link
    We prove a CrC^r closing lemma for a class of partially hyperbolic symplectic diffeomorphisms. We show that for a generic CrC^r symplectic diffeomorphism, r=1,2,...,r =1, 2, ...,, with two dimensional center and close to a product map, the set of all periodic points is dense
    corecore